Welcome to our interactive version of Fertilizer International Issue 494

Please use either the buttons on the left or top right of the page to navigate your way around this interactive PDF

IMPORTANT INFORMATION:

5

10

11

12

13

14

15

16

24

25

26

27

28 29

30 31

32

33

Copyright – Issued six times per year, or bi-monthly. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, mechanical, photocopying, recording or otherwise – without the prior written permission of the Copyright owner.

Number 494 January February 2020 www.fertilizerinternational.com INTERNATIONA Phosphates 2020 Conference, Paris IFA Global Stewardship Conference, New York Fertilizer production goes green Europe's phosphate industry **Potash market report**

■ CONTENTS

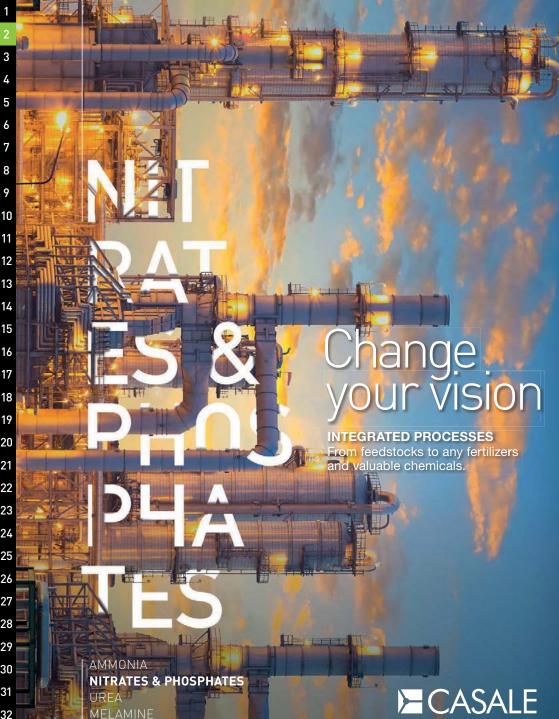
What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference, Paris

COVER FEATURE 2

Fertilizer production goes green


COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL ISSUE 494 JANUARY-FEBRUARY 2020

BCInsight

Southbank House, Black Prince Road London SE1 75J, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

www.casale.ch info@casale.ch

Cover: Fak-anan Kaewthep/ Shutterstock.com

Green fertilizer production

Phosphates 2020 conference

Read this issue online at: www.fertilizerinternational.com

Fertilizer INTERNATIONAL www.fertilizerinternational.com

A complete listing of all articles and news items that appeared in Fertilizer

The theme of the 26th Arab Fertilizer Association Annual Fertilizer Forum &

We look ahead at fertilizer industry prospects for the next 12 months, and explore the key agricultural, macroeconomic and geopolitical drivers likely to

Leading nitrogen and phosphate producers, including ICL, OCP and Yara, have

Two EU projects backed by Fertiberia are attempting to bring to market a new

Incro describes how high-quality liquid fertilizers can be manufactured from

PHOSPHATES AND POTASH INSIGHT

the Semiramis Intercontinental, Cairo, 11-13 February 2020.

all launched major sustainable fertilizer production projects.

Recycled nutrients for NPK production

generation of fertilizers derived from bio-wastes

The year ahead: rebounding from contraction?

Exhibition is 'Reshaping the industry future'. This year's Forum will be held at

NUMBER 494

12

18

CONTENTS

10 Fertilizer International Index 2019

shape the market during 2020.

14 Fertilizer production goes green

19 Fertilizers go circular

food industry wastewater.

International magazine during 2019. 11 The AFA welcomes you to Cairo

JANUARY | FEBRUARY 2020

Phosphates 2020

CONTENTS

What's in issue 494

COVER FEATURE 1

COVER FEATURE 2

Fertilizer green

COVER FEATURE 3

Europe's phosphate industry

21 Phosphates 2020 welcomes you to Paris CRU events will convene the 2020 Phosphates International Conference & Exhibition in Paris at the Marriott Rive Gauche between 8-10 March. 22 Europe's phosphate industry Leading EU phosphate and NPK fertilizer producers are profiled, including

- EuroChem, Fertiberia, Grupa Azoty, ICL, Prayon and Yara. 24 Phosphoric acid plants for the 2020s James Byrd of JESA Technologies (Worley, formerly Jacobs) looks at upcoming innovations in di-hydrate (DH) phosphoric acid plants for the 2020s.
- EcoPhos ChemBe plant for Evergrow in Egypt 27 The innovative ChemBe process from EcoPhos merges beneficiation with chemical processing to generate high-quality phosphoric acid and dicalcium phosphate products.
- Phosphates project listing 2020 29 Fertilizer International presents a global round-up of phosphate rock. phosphoric acid and phosphate fertilizer projects.
- 30 Seeds of doubt Andy Hemphill, senior editor at ICIS Fertilizers, reports on the potash market. Producers are praving that tight capacity control and resurgent demand will curb the current bearish price trend.

REGULARS

_			
1	Editorial Careful custodians	8	People & Calenda
4	Market Insight	9	Then and Now Kir

5 Industry News 32 Index to advertisers **Conference**. Paris

production goes

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

METHANOL SYNGAS

33

Editorial

Guaranteeing

the fertilizer

industry's social

arguably hinges

on good global

stewardship, as

IFA seems to

recognise.

license to operate

2

12

13

14

15

18

20

21

22

23

25

26

27

28

29

30

31

32

33

Careful custodians

nyone who lives in or visits England's green and pleasant land is probably familiar with The Countryside Code. This benign if paternalistic piece of government advice dates back to the 1930s. Yet its simple, clear and sensible message still holds true today.

"We all have a responsibility to protect the countryside now and for future generations, so make sure you don't harm animals, birds, plants or trees and try to leave no trace of your visit."

The code calls on all citizens to be stewards of our natural environment: to respect it, protect it, enjoy it. Its advice to "leave no trace" has wider resonances too.

That's because stewardship, as a concept, equally applies to the responsible management of resources - and all the economic activities that ultimately depend on the environment and nature.

For manufacturers - the industries that make things, as fertilizer producers do - the real spotlight is on product stewardship. This requires those who design, produce and sell things to take full responsibility for all stages of a product's life cycle. That includes the environmental impact of 'stuff' and its final destination after use.

For manufacturers of fast-moving consumer goods and gadgets, these are legally-binding obligations in some regions. Under EU extended producer responsibility (EPR) regulations, for example, producers of electrical and electronic equipment have to finance the waste collection, recycling and endof-life disposal of the products they make and sell. Product stewardship is also a familiar theme to many in our industry. The International Fertilizer Association (IFA), in particular, has worked long and hard to embed product stewardship within the indus-

try's safety, health and environmental (SHE) culture. IFA has done this by establishing 12 SHE principles. These require the association's members to: "Establish and improve their safety, security, health and environmental performance through annual objectives, targets or key performance indicators,"

IFA has also offered its member companies a practical and accessible product stewardship certification scheme for some years now. Called 'Protect & Sustain', the scheme is open to fertilizer producers and non-producers such as fertilizer distributors, traders and transporters.

Take-up has been highly encouraging. Some 52 fertilizer companies operating across 57 countries globally have become Protect & Sustain certified, as of November 2018.

But IFA is now going further - and placing industry sustainability centre-stage - by launching a Global Stewardship Conference for the first time this year. This completely new event has the backing of three influential IFA committees - agriculture, communications & public affairs, and technical safety, health & environment

The eclectic and ground-breaking new conference is being held over five days in early February at the Lotte New York Palace Hotel, Madison Avenue. It includes sessions on the world food system, business sustainability, innovative fertilizers, product stewardship, nutrient stewardship, green production technology and climate change.

Impressively, IFA has secured executives from the industry's top flight to moderate these sessions, including Dmitry Konyaev, Uralchem's chairman, Tip O'Neill the CEO of IRM, and Pravon's CEO Yves Caprara, IFA chairman Mostafa Terrab, the CEO and chair of OCP, is also lending his heavyweight support to the event.

Fertilizer International is proud to be IFA's official media partner for its new Global Stewardship Conference. To coincide with the event, the current issue of the magazine carries several features with a strong stewardship theme. These includes a deep dive into 'green' production technology (p27), and a look at the production of NPK fertilizers (p34) and liquid fertilizers (p37) using nutrients recovered from hio-wastes

Guaranteeing the fertilizer industry's social license to operate arguably hinges on good global stewardship, as IFA seems to recognise. That makes it incumbent on all of us to be careful custodians of our planet - at home, at leisure and, most crucially, at work.

5. Ingiophyce

Simon Inglethorpe, Edito

Comprimo®

We are everything sulphur

As the recognized world leader for sulphur-related projects. Worley has over 65

years of providing unique total sulphur and sulphuric acid management solutions

globally. Worley can provide leading technology, plants, equipment and solutions for

all parts of the sulphur chain. We are everything sulphur.

Comprimo® Sulphur, Chemetics® Sulphuric Acid, and Advisian Port and Logistics

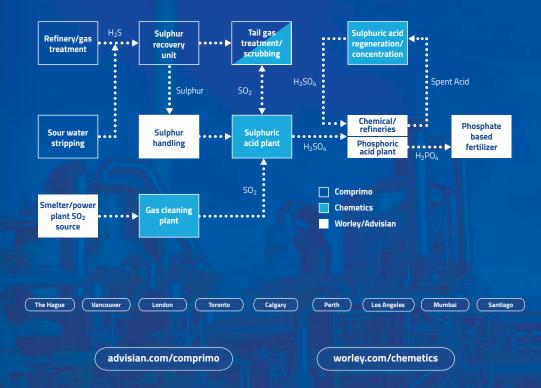
solutions provide world wide focus on site reliability, environmental solutions, plant

economics and workforce development.

COVER FEATURE 1

Phosphates 2020 Conference, Paris

What's in issue 494


CONTENTS

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

www.fertilizerinternational.com

Market Insight

Market Insight courtesy of Argus Media

PRICE TRENDS

13

15

17

18

20

21

22

23

25

28

30

32

33

Urea: A mostly bearish market characterised by a general lack of demand prevailed during the fourth-quarter. European buyers stayed out of the market. Dry weather and low crop prices in Australia and Asia also hindered demand. Prices in Brazil have fallen by \$50/t since September, due to delays to the safrinha corn planting season, although they did eventually bottom out at around \$230/t cfr. India held several significant tenders in the fourthguarter. These helped stabilise the market after three months of decline, even prompting small price rises in China and Egypt. US prices, meanwhile, have continued to trade at a discount for much of the last quarter. Supply into the US was boosted by a two million tonne increase in Chinese export shipments, compared to 2018, while Black Sea urea shipments into the country also rose by around 100.000 tonnes/month.

www.fertilizerinternational.com

Phosphates: Prices fell throughout the fourth-quarter. linked to oversupply and a lack of demand. Production cuts at Mosaic's Faustina plant in the US had little to no effect, with NoIa DAP prices falling as low as \$236/st f.o.b. in December. The Nola price falls had the added effect of dragging down Brazilian MAP prices as well. These bottomed out at around \$277/t cfr - some \$60/t lower than in September. Mosaic responded at the end of December by announcing further production cuts for the first-quarter of this year. Falling DAP prices in China prompted

the announcement of a collective cut in production at the end of December by the '6+2' group of producers. Buying activity in India and Pakistan also died down as 2019 ended.

Australia has experienced weaker than usual demand because of extremely dry weather and wildfires. Unusually, this meant the country continued to export phosphates during the fourth-quarter, a

time of the year when it normally becomes a net importer to satisfy domestic demand.

Potash: Prices have now been in retreat since November 2018. While high inventories have led to oversupply, production cuts to counter this were only implemented at the end of third-quarter. At the same time, demand has fallen due to a combination of low crop prices, relatively high potash prices and adverse weather. Demand in five of the top six buying-countries has been negatively affected by additional factors such as the poor US spring season and the US-China trade war. African swine fever has also hit hog herds in China, reducing both soybean demand and potash sales.

Sulphur: The sulphur market was very bearish during the fourth-quarter, the result of both market oversupply and a particularly weak downstream phosphates market. Consequently, prices hit record lows in both the spot and contract markets. Chinese port stocks remained at their highest levels for six years, exceeding 1.5 million tonnes at one point, allowing buyers

Fertilizer International 494 | January-February 2020

Market price summary \$/tonne – Early January 2020

Nitrogen	Ammonia	Urea	Ammonium Sulphate	Phosphates	DAP	TSP	Phos Acid
f.o.b. Caribbean	200-215	-	f.o.b. E. Europe 112-126	f.o.b. US Gulf	267-294	-	-
f.o.b. Yuzhny	210-225	203-220	-	f.o.b. N. Africa	275-300	275-315	560-675
f.o.b. Middle East	220-235	238-250**	-	cfr India	292-305	-	590*
Potash	KCI Standard	K ₂ SO ₄	Sulphuric Acid		Sulphur		
f.o.b. Vancouver	236-250		cfr US Gulf	70-80	f.o.b. Vancouver	38-45	-
f.o.b. Middle East	250-280	-	-	-	f.o.b. Arab Gulf	38-50	-
f.o.b. Western Euro	pe -	470-507	-	-	cfr N. Africa	55-70	-
f.o.b. Baltic	213-280	-	-	-	cfr India	55-70+	-

Prices are on a bulk, spot basis, unless otherwise stated. (* = contract ** = granular). Phosphoric acid is in terms of \$/t P₂O₅ for merchant-grade (54% P₂O₅) product, Sulphur prices are for dry material, (+ Ouotes for product ex-Arab Gulf), n.a. = not available, Copyright BCInsight

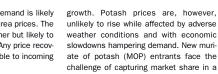
to stay out of the cfr import market. The weak phosphates market has lowered production in northern China, hurting sulphur demand. Sulphur suppliers attempted to sell December product early. But lack of availability pushed prices back up in the Mediterranean region and almost completely halted business in India. Firstquarter contract negotiations have now started with significant quarter-on-quarter price drops looking likely. Traders secured tonnages from Adnoc in the high-\$30s/t f.o.b., for example, down \$13/t on the last guarter. OCP, meanwhile, settled with Adnoc below \$60/t cfr, following no agreement in the fourth-quarter. Fundamentals are better in Western Europe's molten market, though, where tighter supply suggests a flat-to-firm outlook.

MARKET OUTLOOK

Urea: The Asian market is turning bearish. now that volumes are in place to cover awards to India, with traders starting to sell short again. With the outlook looking

Watch free fertilizer market presentations

Watch the free webinars here: www.argusmedia.com/webinars


Fertilizer International 494 | January-February 2020

flat to bearish, low Asian demand is likely to drag down Middle East urea prices. The market west of Suez is firmer but likely to come under pressure too. Any price recoverv in the US looks vulnerable to incoming

Phosphates: With most major producers announcing production cuts at the end of last year, the phosphate market enters 2020 slightly more balanced than it was in 2019. But demand in most key destination markets is still weak, and stocks in India and Pakistan remain high, resulting in a soft outlook for the first-half of 2020.

cargoes

Potash: Argus expects potash prices to begin to flatten out at some point in the second-quarter, once production cuts have been given time to take effect and supply rebalances with demand. Prices should then stabilise in the second-half of 2020, buoved by a need to restock after purchasing cuts in 2019. Fundamentals are also showing positive signs, in terms of both crop prices and long-term potash demand

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020

Conference. Paris

COVER FEATURE 2

production goes

COVER FEATURE 3

phosphate industry

Fertilizer

Europe's

green

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

weather conditions and with economic slowdowns hampering demand. New muriate of potash (MOP) entrants face the challenge of capturing market share in a fundamentally oversupplied market. Sulphur: Prices are holding steady with most cfr spot levels above \$60/t. Because larger sulphur consumers are mainly cov-

ered, aside from pockets of demand in Indonesia, Bangladesh, Jordan and Argentina, the impact of fertilizer production cuts will weigh on prices. In China, high port stocks and cuts in phosphate production will keep buyers out of the market. while production cuts in North Africa will also mean lower levels of demand. Middle East producers kept their monthly prices flat as the year began. Concerns about freight rate increases also persist due to the new IMO 2020 regulations and geopolitical tensions. Black and Baltic Sea ports may face freight rises if ice restrictions are implemented there.

BINARS

www.fertilizerinternational.com

Fertilizer Industry News

UNITED KINGDOM

Anglo in possible £386m Sirius rescue bid

Sirius Minerals is in talks with Anglo American about a £386 million cash offer for its UK-based polyhalite mine project.

Anglo is potentially offering to buy-out Sirius Minerals at a price of 5.50 pence per share. This would provide shareholders with a 34 percent premium on the company's 7th January share price, the level shares were trading at before the takeover talks were announced

Sirius shares were valued as high as 37 pence, going back to August 2018, but were trading at just over four pence a share before Anglo's approach was revealed. The proposed buy-out price "could provide certainty to Sirius' shareholders". Anglo said in a statement.

Sirius Minerals confirmed on 8th January that its board was in "advanced discussions" with Anglo American, Under UK takeover rules, Anglo now has until 5th February to make a formal offer for the business. Sirius has told Anglo that it expects to recommend the takeover to its shareholders, if a firm offer is made at the currently proposed share price.

18

21

23

25

28

Sirius has successfully raised \$1.2 billion (£920 million) of 'stage 1' finance for its under-construction Woodsmith mine in North Yorkshire, near Whitby, close to England's North Sea coast. But the junior mining company was seeking \$3.8 billion to fully develop the project and become the world's biggest polyhalite producer.

However, Sirius was forced to abandon its 'stage 2' financing plan in September last year, citing adverse bond market conditions (Fertilizer International 493, p12). Instead, it announced a slowdown of construction at the Woodsmith mine and launched a comprehensive six-month project review. This root-and-branch review is examining financing options, project optimisation and cost reductions, as well as possible strategic partnerships.

Sirius subsequently issued a revised two-stage development plan in November 2019 in an update on the progress of its strategic review

Anglo American's current offer is provisional and the company is not obliged to proceed to a firm offer. The massive multinational mining company has also reserved the right to reduce or vary its

• Or if another party makes a lower offer for Sirius

• Or if Sirius announces a 'whitewash transaction'.

In a statement, Anglo confirmed it had been potentially interested in the Woodsmith mine project for some time. This was due to "the quality of the underlying asset in terms of scale, resource life, operating cost profile and the nature and quality of its product". The polyhalite resource beneath the Woodsmith mine "has the scale, thickness and quality to be mined efficiently using bulk mining methods through a relatively simple, lowenergy, non-chemical production process". commented Anglo. The long-term profitability of the project, specifically its potential to oper-

ate at an earnings (EBITDA) margin well above 50 percent, was another attractive feature. Anglo said the potential Sirius takeover was in keeping with its strategy of focusing on world-class assets and shifting its

portfolio to "products that support a fast-

growing global population and a cleaner, greener, more sustainable world" If the current discussions proceed to

a formal offer, Anglo says it will commit to providing the necessary financial, technical and marketing resources needed to

successfully deliver the project - adding that this was in the interests of both Sirius' employees and its customers.

Anglo has signalled that it would broadly keep to the latest development plan for the Woodsmith mine published in November. if the takeover proceeds. However, it will "update the timeline, optimise mine design and ensure appropriate integration with its own operating standards and practices". The takeover, if confirmed, would mark

Anglo American's re-entry into the fertilizer market, having previously divested its Brazilian phosphate assets to China Molybdenum for \$1.5 billion four years ago. This divestment was part of a major restructuring and debt reduction exercise carried out in 2016.

FERTILIZER INDUSTRY NEWS

Sulphur in agriculture conference

ICL UK held its first conference dedicated to sulphur as a crop nutrient in December. The one-day UK-based event was attended by over 75 delegates

According to the company, the conference had two clear aims: firstly, to raise awareness of the role of sulphur in crop nutrition and rising soil sulphur deficiency; and, secondly, to demonstrate the benefits of a precise and balanced crop nutrition strategy.

Soils requiring fertilizer application to replenish their sulphur content are increasingly widespread, explained professor Steve McGrath of Rothamsted Research. While at one time adequate supplies came from atmospheric deposition, today's cleaner air means sulphur needs to be applied to maximise crop yields and quality. In 1970, it was estimated that eight million t/a of sulphate were deposited onto UK soils from industrial emissions. Today, the figure is less than 500,000 t/a. Yet fertiliser application on UK farms only adds an additional 220,000 t/a of sulphate, leading to substantial and widespread sulphur deficits. Sulphur also has a vital role to play in nitrogen uptake by crops. "Where sulphur is deficient, expensive nitrogen is wasted," said professor McGrath.

It is important to check for essential soil macro- and micronutrients, said Jonathan Telfer of Lancrop Laboratories. There are three key stages where sulphur measurements need to be taken in his view: firstly, a pre-season soil check for the crop nutrition plan: secondly, in-season leaf and tissue analysis to check whether nutrients are deficient; and, finally, post-season grain analysis to evaluate the efficiency of nutrient use and content. Sulphur deficiency in all UK soils has increased from 60 percent in 1995 to 97 percent in 2017, according to Lancrop's data.

Sulphur can play an important part in wheat and potato quality. Dr Tanya Curtis of Curtis Analytics outlined how food processing and retail industries are increasingly concerned about the acrylamide content of crops, something that sulphur can help control. An inadequate sulphur supply can lead to the accumulation of the amino acid asparagine and sugars in crops. These are precursors of acrylamide, a neurotoxin that can form at high temperatures in baking, roasting and frying.

ICL's Boulby mine in northern England produces a range of polyhalite-based fertilizer products. These are marketed and sold under the Polysulphate brand name. Conference delegates were presented with ICL's latest research findings and independent UK trial results. These demonstrated the agronomic benefits of Polysulphate products - particularly as a source of sulphur.

Peter Scott, UK and Ireland technical director for Origin Fertilisers, unveiled positive findings for Polvsulphate use on maize. grassland and alfalfa. Tom Land, Agrii UK's fertiliser manager, also described the consistently good results obtained when using Polysulphate on wheat, oilseed rape and pulses.

Andrew Stillwell, technical sales manager for Bartholomews Agri Food, presented the results of spring barley fertilization trials carried out in collaboration with the International Potash Institute (IPI). These compared fertilization with ICL's FertilizerpluS and PotashpluS products to a conventional fertilization programme using potassium chloride (MOP). The use of PotashpluS was found to improve barley yield at all nitrogen application rates and splits. For malting barley, it also helped to improve final grain nitrogen content, and other quality parameters, providing better returns to the grower.

Preparation Technology for Solid Fertilizers

Mineral fertilizer Organic bio-fertilizer Soil improver

Highlights of the EIRICH Technology

- Mixing, granulating, coating and reacting in a single machine
- Use of secondary raw materials in the form of filter cakes, sludges and nutrient salt solutions
- Environmentally friendly granulating process, no escaping fine dust or aerosol
- Custom-tailored plant solutions

Maschinenfabrik Gustav Eirich GmbH & Co KG Germany · eirich@eirich.de · www.eirich.com

www.fertilizerinternational.com

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 **Conference**. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL **JANUARY-FEBRUARY 2020**

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

What's in issue 494

COVER FEATURE 1

Phosphates 2020

Conference. Paris

COVER FEATURE 2

production goes

COVER FEATURE 3

Fertilizer

green

CONTENTS

TURKEY

2

n

13

15

18

22

23

25

28

30

32

33

Veolia supplies technology to Alkim

Veolia Water Technologies is to supply Istanbul-based Alkim Alkali Kimya with production technology for a new sulphate of potash (SOP) plant.

Alkim, one of the world's largest sodium sulphate producers, is investing in a 50,000 t/a capacity water-soluble SOP unit at its Koralkim production complex in Turkey. This will enable the company to produce, market and sell premium potash fortilizer for the first time

Veolia will equip the plant with the processing technologies required for highquality SOP production. The company's proprietary HPD[®] crystallisation systems will be an integral part of the new production unit. The technology package offered to Alkim will also include multiple-effect crystallisers. These will be used to synthesise around 35,000 tonnes of food-grade sodium chloride annually, a by-product of the process.

The project's capital costs will be kept low by using surplus cogeneration capacity at the Koralkim site to help power the new SOP unit. Opex (operational expenditure) will also be controlled by recovering the clean condensate and residual heat used for dissolving and heating incoming potassium chloride solution

Veolia recently announced it was supplying crystallisation technology for Alkimia Group's new 25,000 t/a capacity watersoluble monoammonium phosphate (MAP) plant in Gabes. Tunisia (Fertilizer International 493, p11)

UNITED STATES

Mosaic cuts production further

The Mosaic Company announced fresh phosphate production cuts in December in response to market conditions.

Phosphate production at its Central Florida operations will be reduced by 150,000 tonnes per month, the company confirmed in a statement.

The latest phosphate production cutback comes on top of the already announced 500,000 tonne reduction in Mosaic's 2019 second-half output, primarily in Louisiana, The company is also operating its Canadian potash mines at lower rates currently (Fertilizer International 493, p8).

Although temporary, the production cuts are extended and indefinite. "Production in both phosphates and potash will return to full rates when required to meet customer needs." Mosaic said in a statement

The potash and phosphates producer linked the latest production cut to a number of market factors. "A third consecutive disappointing application season in North America has led to continuing high inventories and price weakness. Mosaic will not produce at high rates when we are unable to realize reasonable prices," said Joc O'Rourke, Mosaic's president and CEO.

He added: "We believe our extended production curtailments will contribute to balancing the global supply-and-demand picture as we move into 2020. With fertilizer-depleted soils and rising agricultural commodity prices, we continue to expect robust demand and strong business conditions in the year ahead."

Mosaic now expects its fourth-quarter potash and phosphates shipments to be "modestly below" its previous guidance. It also expects its profitability for phosphates production (gross margin per ton) to fall "significantly below" previous guidance as a direct consequence of the low sales volumes and low prices now being realised for phosphates.

Wilbur-Ellis buys Nachurs Alpine Solutions

Wilbur-Ellis has announced its purchase of Nachurs Alpine Solutions (NAS), the pioneering North American precision agriculture firm and leading speciality chemicals manufacturer

The purchase of NAS will add to Wilbur-Ellis' existing assets portfolio. The company is already a leading international distributor of agricultural products, animal nutrients and speciality chemicals.

NAS has pioneered the precisionplaced liquid fertilizer market in the US and Canada over many decades, since its formation in 1946. The company currently employs 200 highly-skilled staff and owns seven strategically-located and highly-automated manufacturing plants, together with 85-plus distribution terminals across North

America NAS formulates its liquid fertilizer products to meet a wide range of crop nutrition needs and different growing conditions. Notably, it was one of the first fertilizer producers in North America to adopt 4Rs Nutrient Stewardship. The company has also diversified in the past 20 years. It now provides de-icing and freeze prevention solutions for the transportation and

mining industries, as well as fluids for the energy sector.

Following the buy-out, NAS will become a new business division of Wilbur-Ellis, operating alongside the company's other core businesses - namely Agribusiness, Nutrition and Connell, NAS products will continue to be sold in the US and Canada under the signature NACHURS® and ALPINE® liquid fertilizers brands. The new division will be led by current

NAS president and CEO Jeff Barnes. He will report directly to John Buckley, the president and CEO of Wilbur-Ellis.

"NAS is a great strategic fit for Wilbur-Ellis," said John Buckley. "It has also demonstrated an extraordinary ability to innovate. Over the past five years, the company has launched over 50 new products, which has provided greater stability in changing markets and contributed significantly to their product portfolio."

"At NAS, our business is built on quality, integrity and innovation," said Jeff Barnes, "So, we're proud to be joining Wilbur-Ellis, a company that supports those values, has an unwavering commitment to safety, and is dedicated to serving customers."

Van Iperen expands in the US

Van Iperen International is fully up and running in the US market.

The leading Dutch speciality fertilizer producer is now operating in the United States through subsidiary company Van Iperen America, based in Miami, Florida. This provides Van Iperen with the ability to directly supply US distributors and growers, and provide better support to its customers in Central and South America.

Van Iperen offers a wide range of speciality fertilizers and biostimulant products for fertigation and foliar application. The company already operates in more than 100 countries world-wide

"Our roots go deep in the fertilizer business and we are thrilled to provide our world-wide crop experience and topquality specialty fertilizers to the US and Latin American markets," said Erik van den Bergh, managing director, Van Iperen International

Van Iperen also has a strong partnership with Milliken, exclusively offering Milliken's non-staining Liquitint Agro colourants in its high-quality NPK formulations. "We... offer a broad range of Liquitint Agro coloured formulations that provide distributors with a great opportunity to dif-

ferentiate themselves in a competitive marketplace, with tailormade colours for tailor-made NPK formulas."

Van Iperen says there is a growing recognition from both manufacturers and farmers that colour can play a significant and highly beneficial role in fertilizer formulations, seed treatment and crop protection.

"Liquitint Agro colourants make it possible to blend thousands of colours from across the spectrum on demand from only three liquid primary colourants held in inventory," said Steven Spanhove, senior sales director, Milliken Europe, "We are seeing a trend that deeper and brighter colours represent quality, as well as a preference towards natural and earthy reds, blues and greens."

NETHERLANDS

Techimont and Stamicarbon celebrate 10th anniversary

Maire Techimont Group and its urea licensing subsidiary Stamicar bon celebrated a decade in business together in December.

Italian-headquartered Maire Tecnimont purchased Dutch company Stamicarbon from DSM in 2009. The 10th anniversary of the buy-out was jointly celebrated on 11th December with an event at Limbricht Castle in the Netherlands. This was attended by Stamicarbon staff and the management of both companies.

The anniversary provided both companies with an opportunity to reflect on the joint achievements of the last ten years, and look ahead to future shared opportunities.

From Maire Tecnimont's point of view, the purchase of Stamicarbon has enabled it to become a leading technology provider for urea production. More than 250 urea plants worldwide use Stamicarbon's technology currently. The purchase has also strengthened Tecnimont's profile in the fertilizer industry, as both a technology licensor and EPC contractor. Stamicarbon, in turn, has been able to broaden its commercial offering to customers, and expand its international footprint by taking full advantage of Maire Tecnimont's global network.

Speaking at the 10th anniversary event, Fabrizio Di Amato, the chairman and founder of Maire Tecnimont Group, praised "the technological attitude and innovation DNA of Stamicarbon". He added: "The group currently owns more than 1,400 patents and has more than four R & D centres. The next step to further foster innovation was the establishment of NextChem."

Pierroberto Folgiero, Maire Tecnimont's CEO, said: "Innovation is the result of vision and investment. But to take off it needs

Köppern

Europe's phosphate industry

Dry granulation of fertilizers

Our technology has been recognized around the world for dry granulation of MOP/SOP and NPKs. Our services cover pilot plant tests, basic engineering, equipment supply, start-up supervision, and commissioning. Typical flake capacities are in the range of 10–130 t/h or more.

We have received orders for more than 90 fertilizer compactors of latest Köppern technology since the year 2000. The total installed flake capacity of these plants is exceeding 77,000,000 tpa. Köppern – Quality made in Germany.

 State of the art technology Process technology know-how · High plant availability Quick roller replacement

www.koeppern.de

Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

London SE1 7SJ, England

www.fertilizerinternational.com

Fertilizer International 494 | January-February 2020

Southbank House, Black Prince Road

FERTILIZER INTERNATIONAL

JANUARY-FEBRUARY 2020

know-how and human capital, two qualifications that Stamicarbon has always had."

Folgiero added: "The future driver for innovation and transformation of the group will be digitalisation, where we were able to make a step forward by acquiring the company Protomation. The acquisition also brought growth to Stamicarbon, as we were able to expand our portfolio of products."

Peiman Diavdan, Stamicarbon's CEO. said. "In order to keep feeding a growing population we will focus, together with the group, on sustainable intensification of agriculture with fertilizers. This means that production of fertilizers needs to be optimised to have less impact on the environment and to be based on renewable energy sources. But also new technologies have to be developed to make fertilizers more efficient and effective. A challenge that we and Maire Tecnimont will work on.

13

15

18

23

25

28

30

32

33

Koolen Industries invests €4m in **Proton Ventures**

Clean energy conglomerate Koolen Industries has invested four million euros in the ammonia production and storage company Proton Ventures.

Proton Ventures is at the forefront of 'green' ammonia production technology. The Dutch company designs and builds pressurised and cooled ammonia storage plants, as well as small-scale ammonia production plants known as NFUEL units.

"Proton Ventures' unique and patented technologies enable the production of ammonia using clean energy sources. Ammonia is an ideal storage solution for solar power plants and wind farms as it is particularly well suited to store and transport large amounts of energy in efficient ways. This makes it a perfect fit for Koolen Industries as we continue to push the global transition to clean energy," said Kees Koolen, the CEO of Netherlandsbased Koolen Industries

Proton Ventures is currently involved in a number of renewable energy ventures. including large-scale ammonia storage projects in Estonia and Bulgaria. The investment by Koolen will help Proton speed-up the global roll-out of its NFUEL ammonia production units.

"This creates great opportunities for ongoing cooperation and opens doors for us to bigger projects," said Hans Vrijenhoef, the CEO of Proton Ventures.

"Alongside our lithium and flow battery capabilities ammonia adds value to our portfolio, especially with regards to clean energy storage at large scale. This form of energy is relatively cheap, and it is easy to transport and import into the Netherlands

or indeed into other markets." said Gerben Hilboldt, Koolen's chief technology officer.

AFC invests \$50m in Danakali

ERITREA

The Africa Finance Corporation (AFC) is to make a \$50 million strategic investment in Australian potash project developer Danakali. This will be delivered through a subscription agreement for the placement of ordinary shares. The investment will provide AFC with a 32 percent equity stake in Danakali

The latest agreement with AFC, announced in early December, forms part of a wider funding package to develop and construct the Colluli sulphate of potash (SOP) project in the Danakil region of Eritrea, East Africa,

The newly-announced \$50 million equity stake takes AFC's total participation in the project to \$150 million. It adds to AFC's \$100 million credit approval for the Colluli Mining Share Company (CMSC) previously announced last August (Fertilizer International 492, p10).

AFC will be granted the right to nominate up to two directors to Danakali's board as part of its new equity investment. Colluli is a well-advanced, fully-permitted and construction-ready potash project. Danakali says it is now ready to begin project execution, putting Colluli on-track for

production as early as 2022. CMSC finally issued a notice to proceed to DRA Global, the Colluli project's preferred EPCM contractor, at the end of December. This allows DRA to begin the EPCM process, according to Danakali, DRA's contract with CMSC covers:

 All aspects of Colluli project design. project management, procurement, construction management and supervision Commissioning of the complete process plant and associated infrastructure

 Awarding and overseeing major contracts for early works, earthworks, structural, mechanical, piping, electrical and instrumentation works, and the laboratory and permanent camp.

Initial EPCM activities include: a review and update of front end engineering design (FEED) by DRA, geotechnical test work, and

the purchase of critical items including reverse osmosis equipment

Tony Harrington, Colluli project director, said: "I am very pleased we will be formalising our partnership with DRA. With the majority of project funding committed, the CMSC team is ready and eager to collaborate with DRA and commence work immediately. This is the moment our personnel and other stakeholders in Eritrea have been waiting for."

INDIA

KBR to supply technology to Talcher project

KBR is to supply ammonia synthesis technology for the Talcher ammonia-urea proiect in India

It secured the Talcher contract from Wuhuan Engineering, the project's EPC contractor, KBR will provide the technology license, basic engineering design, catalyst, and proprietary process equipment for the project.

Talcher is a flagship coal-to-urea project for India. It is a central part of government efforts to reduce the country's import reliance by increasing domestic urea capacity. The project is owned by Talcher Fertilizer Limited (TFL), a joint venture between a number of Indian public sector companies

The Talcher project is a particularly pioneering venture as no other operational urea plants in India are based on coal gasification technology at present.

"We are proud to be part of this significant project in India," said Doug Kelly, KBR president, technology solutions, "KBR's ammonia synthesis process will deliver flexibility, reliability, and cost competitiveness to Talcher for years to come."

Ramagundam aims for March start-up

The Ramagundam urea plant is expected to complete commissioning and begin commercial urea production by the end of March, according to its owners Ramagundam Fertilizers and Chemicals Ltd (RFCL). The plant's gas supply pipeline from

Kakinada is now operational and its flare stack was also recently commissioned

The plant will be the first of the previously closed state-owned fertilizer plants In India to be brought back on-line. A number of plants are being revamped and upgraded as part of Indian government ambitions for self-sufficiency in urea production. RFCL was formed as a joint venture

Fertilizer International 494 | January-February 2020

FERTILIZER INDUSTRY NEWS

The new plant's foundation stone was laid by India's prime minister Narendra Modi in August 2016.

TOGO

Dangote backs phosphate fertilizer project

Dangote Industries Limited has signed a project agreement with the government of Togo to develop the country's phosphate resources.

The \$2 billion project to build a one million tonne capacity phosphate fertilizer production plant forms part of Togo's National Development Plan. This proposed plant will consume locally-supplied phosphate rock, with initial mine development work due to start before the end of 2019.

Togo, with over two billion tonnes of phosphate reserves, is one of the Africa's leading phosphate producers.

Under the terms of the agreement, Dangote will supply ammonia as a raw material for phosphate fertilizer production, while the Togolese government will provide access to the country's phosphate rock resources. Dangote, said to be Africa's biggest industrial group, is expected to become Africa's largest ammonia producer on the completion of its large-scale petrochemicals and fertilizer complex near Lagos, Nigeria,

Dangote also unveiled plans to construct a 1.5 million t/a capacity cement manufacturing plant in Lomé, Togo's capital. This plant will satisfy domestic and regional cement demand and use clinker from both Togo and Nigeria.

Aliko Dangote, Dangote Group's president and CEO, said: "This partnership is in line with our agenda in creating prosperity and enhancing economic development not only in Togo but also in Africa. In addition, Dangote Group is determined to support the Government of Togo in its industrialisation strategy... making Togo an attractive investment destination."

Faure Gnassingbé, Togolese President, said: "By processing our phosphate... we will be able to provide our farmers with good quality fertilizers at an affordable cost. Having an industrial investor like Dangote shows that our efforts to improve the business climate are paying off."

SAUDI ARABIA


Aramco sell-off raises almost \$26bn

The Saudi Arabian government's sell-off of 1.5 percent of its shares in Saudi Aramco in early December has become the world's biggest ever initial public offering (IPO).

The share sale raised \$25.6 billion for the Saudi state. This still fell some way short of the valuation hoped for by Saudi crown prince Mohammed bin Salman, however, Although the sell-off notionally values Aramco at \$1.7 trillion, bin Salman had reportedly been looking to raise \$100 billion from the sale.

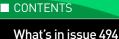
Although the original aim of the flotation was to attract international institutional investors to the Saudi market, in the end it was only offered to local and regional investors.

The proceeds of the IPO will be used to diversify the oil-dependent Saudi economy. They will be invested into strategic projects via the country's Public Investment Fund.

Crystallization of MAP

Production of soluble, high guality Mono Ammonium Phosphate

There is an increasing need for high purity and water-soluble fertilizer for fertigation and foliar applications. GEA provides sophisticated customized plant solutions that are adapted to the specific compsition of merchant grade phosphoric acid (P.O.). Our crystallization technology allows the control of impurities and thus guarantees the quality of the final product. Special features are:


- Fully water soluble MAP with less than 0.1 % insolubles in water
- Moderate pH-value (safer and less corrosive)
- Free of chlorine, sodium and other harmful elements

For contact details: gea.com/contact or meet us at Phosphates in Paris, France from 8-10 March 2020.

gea.com

www.fertilizerinternational.com

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL **JANUARY-FEBRUARY 2020**

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

www.fertilizerinternational.com

People

2

10

13

15

18

23

24

25

27

28

29

30

33

Gordon (Gord) McKenzie became the new president and CEO of Canpotex in mid-January. His appointment is the culmination of a 25-year fertilizer industry career in a variety of senior sales and marketing roles. Gord most recently served as Mosaic's vice president for global sales.

"Gord is an outstanding leader with a proven ability to deliver strong operating and financial performance in an internationally-focused organization," said Joc O'Rourke, chair of Canpotex's board of directors, and Mosaic's president and CEO. "The Board believes that Gord is the right choice to lead Canpotex."

"Canpotex is a great Canadian company with an outstanding team that has served overseas potash customers with excellence for almost 50 years. With Gord's appointment, Canpotex is well-positioned to continue to compete, and to succeed, in highly competitive overseas potash markets," said Ken Seitz, who sits on Canpotex's board of directors and is also executive vice president and CEO for potash at Nutrien.

Raed Soub was appointed Secretary General of the Cairo-based Arab Fertilizer Association (AFA) at the start of January. He replaces Mohamed Zain. Mr Soub is a highly experienced international manager and was formerly the advisor to the chairman of the Arab Potash Company (APC). He has served with more than 20 international companies since 1989, occupying the positions of chair, director or general manager. Raed is a chartered engineer and holds a bachelor's degree in chemical engineering from the University of Jordan.

Samir Brikho took up the role of chairman of EuroChem Group in December. He

has served on EuroChem's board since
 2018. Mr Brikho was notably CEO of Amec
 Foster Wheeler from 2006 to 2016. Samir's
 long and high-level business career has also
 included stints as CEO of Alstom Kraftwerke
 and CEO of ABB Lummus Global.

"I am proud to be taking over as chairman at such an exciting point in Euro-Chem's history," Samir Brikho said. "I see enormous potential for the business and am looking forward to helping the company become the most successful player in the fertilizer sector."

Mr Brikho replaces Alexander Landia who has left EuroChem's board after more than six years. He will now take up an unspecified new role within AIM Capital, EuroChem's holding company. "It has been a pleasure to serve as chairman for EuroChem Group, and I would like to wish Samir all the best in his new role," Alexander Landia said.

OCP Group has received the Industry Stewardship Gold Medal for the second year in a row. The International Fertilizer Association (IFA) prize was awarded to **Hanane Mourchid**, OCP's senior vice president for sustainability, at IFA's Strategic Forum in Versailles on 20th November. The award, which was personally presented by IFA president Mostafa Terrab, recognises OCP's strong commitment to health, safety and environment (HSE) and its leadership on sustainable development

OCP has demonstrated its commitment to HSE through the company-wide 'Zero Incidents' programme. This was set up with the help of DuPont OCP Operations Consulting (DOOC), a joint venture between OCP and DuPont. The programme covers both

makes each individual responsible for the safety of colleagues as well as their own safety in the workplace. OCP has also now implemented 18 health and environmental safety standards across all its industrial airaccident frequency rate has dropped by 60 percent in the last five years.

employees and external subcontractors. It

d Alexander Gilgenberg was appointed as general director of the PhosAgro subsidiary company Apatit in November. Alexander was appointed to the role from his previous position as deputy general director. He has worked for PhosAgro since 1999. Vladimir Davydenko, who previous headed Apatit, will now take on a high-level to technical development role at PhosAgro.

PhosAgro CEO Andrey Guryev said:
 "These changes in the management structure of our production assets will enable the company to take on the challenges we face. PhosAgro's recently-announced
 'Strategy to 2025' calls for a large-scale investment programme of \$3 billion. This requires direct personal control over investment activities – which will be carried out by Vladimir Davydenko with his enormous professional experience in this area."

PhosAgro plans to increase its production capacity for fertilizers and feed phosphates to 11.7 million tonnes by 2025, a 25 percent increase on its 2018 capacity. The strategy also involves an expansion in the number of fertilizer grades produced by PhosAgro. These are set to increase from 39 grades in 2018 to 50 fertilizer grades by 2025. The company's expanded product range will include new high-performance products which incorporate bio-additives.

17:19 CRU Nitrogen+Syngar FEBRUARY 47 IFA Global Stewardship Conference, NEW YORK, United States Contact: IFA Conference Service Tel: +33 1 53 93 05 00 Email: ifa@fertilizer.org UBAI, UAE 0UBAI, UAE

26th AFA Annual Forum & Exhibition, CAIRO, Egypt Contact: Arab Fertilizer Association Tel: +20 2 23054464 Email: afa@arabfertilizer.org

17-19 CRU Nitrogen+Syngas 2020, THE HAGUE, Netherlands Contact: CRU Events Tel: +44 (0) 20 7903 2444 Email: conferences@crugroup.com MARCH

3-5 IFA Market Intelligence Conference, DUBAI, UAE Contact: IFA Conference Service Tel: +33 1 53 93 05 00 Email: ifa@fertilizer.org

8-10 CRU Phosphates 2020, PARIS, France Contact: CRU Events

Tel: +44 (0) 20 7903 2444 Email: conferences@crugroup.com

APRIL 20-22 88th IFA Annual Conference, NEW DELHI, India

Contact: IFA Conference Service Tel: +33 1 53 93 05 00 Email: ifa@fertilizer.org JUNE

44th Annual AIChE Clearwater Conference, CLEARWATER, Florida Contact: Miguel Bravo, AIChE Central Florida Section Email: vicechair@aiche.cf.org Fertilizer is crucial to the lives of more than a quarter billion Indonesians. So when the country's state fertilizer producer approached us with a goal of making the nation self-sufficient, we responded. Thanks to our tilting

pan filters, the plant made dramatic

improvements in output and energy

ENGINEERED SUCCESS

ANDRITZ AG / Stattegger Strasse 18 / 8045 Graz / Austria / andritz.com/separation

efficiency and is on target to produce 200,000 tons of phosphoric acid per year – enough to support the entire country's agricultural sector. It's just one of countless challenges solved by ANDRITZ – one of the world's leading separation specialists.

CAN A CHEMICAL FILTERING

TECHNOLOGY REALLY HELP

FEED A NATION OF

252,000,000 PEOPLE?

ASK YOUR SEPARATION SPECIALIST

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference, Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL ISSUE 494 JANUARY-FEBRUARY 2020

BCInsight

Southbank House, Black Prince Road London SE1 75J, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

www.fertilizerinternational.com

Fertilizer International 494 | January-February 2020

12

13

14

15

18

20

21

22

23

24

25

28

29

30

32

33

1970s

1980s

2000

2010s

Kimre

Fertilizer International reached its 50th anniversary in 2019. The magazine's continuing success is built on mutually beneficial partnerships forged over five decades. This year, we are continuing to show our appreciation by profiling a much-valued commercial supporter in every issue. This month it's the turn of renowned clean air technology company **Kimre**, a stalwart long-term advertiser. Founded in Florida by MIT graduate George C Pedersen in 1973, this leading global business is still headquartered in Homestead, Florida, within easy driving distance of both Miami and Key Largo. Marketing manager Christine McAniff offers her personal take on Kimre's success storv...

Company profile

As we embark on another successful year, we would like to take the opportunity to recognise and thank our loyal clients. Without them, our longstanding success in the industry would not be possible. For more than 45 years, Kimre engineers and application specialists have been solving process and gas stream emission problems in chemical and fertilizer plants around the globe. This invaluable experience provides us with a superior understanding of gas and vapour stream separation and mass heat transfer. At Kimre, we pride ourselves on our trusted relationship with clients – and on developing and maintaining these.

Our main office and manufacturing facility is based out of Homestead, Florida. Being a global business, we are ably supported by our Pennsylvania factory, our Chinese partner and our worldwide network of distributors and representatives. Process engineers, environmental engineers and production managers all recognise Kimre as a valuable and trusted resource. We are responsive and committed to boosting production and efficiency in the chemical process industry.

Kimre offers several services, from top of the line filtration to customised turnkey air pollution control systems. We design, engineer and manufacture our monofilament products – from raw materials to the finished item. Our fibre bed filter division ensures that each filter is tested on-site. We staff a brilliant team of highly qualified engineers who are experts in various applications, such as anmonium nitrate, chrome nitric acid, phosphates, sulphuric acid, urea granulation and oil mist.

Our latest development

Using our own SXF[™] Semi-Cross Flow Horizontal Scrubber with AEROSEP[®] MULTI-STAGE AEROSOL SEPARATION SYSTEM and B-GON[®] mist eliminator media, Kimre is able to determine removal efficiencies of chrome particulates, at both our own manufacturing Above: The Kimre team, Homestead, Florida

- 1973 Kimre was founded by George C Pedersen, a Florida native and MIT graduate.
 1974 • First commercial sale of a product.
 1979 • Kimre successfully retrofitted Borden Chemical Company phosphate operations at Piney Point, avoiding a plant shutdown due to excess emissions.
- 1983 Established L/QUI-NOMIX® Technology for oil/ water separation systems installed in a majority of OWS applications.
 1985 • Kimme is recognised as the first nitrobenzene

retrofit for equipment. First major AEROSEP® Multistage Aerosol Separation System operating, GK Mannheim, Germany

- 1989 Cooling tower installation at SASOL LTD, Secunda, South Africa: a 100 metre diameter *Drift Eliminator* installation.
- 1990s • Kimre's Europe office opens. • Kimre technology identified as MACT by the EPA for chrome plating operations.

2008 • Designed and supplied first full-scale scrubber for phosphate fertilizer plants.

2012 • Fibre Bed Filters added to product line.

- **2014** Kimre designed and supplied four turnkey urea granulation plants in 2014.
- 2016 Opened Kimre China offices.
 Opened Kimre Philadelphia office.
 2017 Kimre achieved the lowest dust and ammonia
- emissions of any urea granulation facility in the world. 2019 • Kimre celebrates 45 years of operations.

plant and on-site for customers. Currently, we are in the process of using our pilot unit to capture highly carcinogenic chromate dust particle emissions to prove the removal efficiencies of our products. The chromate pilot unit testing is being performed at a customer site in a highly populated residential downtown area. It is Kimre's objective to ensure the residents are not exposed to plant emissions and that local air quality standards are maintained. As air emission standards are extremely difficult to achieve economically, accurate testing will prove the ability of Kimre's *AEROSEP*[®] to achieve the lowest emission levels in such an important application.

GLOBAL STEWARDSHIP

NEW YORK, USA, 4-7 February 2020

GOLD SPONSORS SILVER SPONSOR

. ...

GPIC

The conference will bring for the

very first time IFA's Agriculture,

Safety-Health-Environment

Committees together with an

exciting range of speakers from

international governmental and

non-governmental organizations.

development and engineering to

take a comprehensive look at

corporate SDG implementation.

For more information and

to book your place, visit:

www.ifa-newyork2020.org

policymakers, academia and

multi-sectorial business

and Technical &

Communications & Public Affairs

Fertilizer

MEDIA PARTNER

Is social and environmental sustainability on track to become as important as market share and shareholder value? New business models and new value propositions integrating sustainability are appearing around the world, securing not only the reputations of companies, but also their ability to attract and maintain staff, access to finance and new business opportunities.

The IFA Global Stewardship Symposium is the place to hear more about innovative stewardship initiatives, learn more about sustainability reporting, get inspired by sustainability programs within the fertilizer industry and understand expectations from UN agencies, the finance community, and leading voices in the NGO community.

Through a focus on the fertilizer industry's stewardship priorities, this event will present innovations and investments in areas of environmental protection and climate change and inform on critical outcomes of the most recent UN reports and resolutions for phosphorus and nitrogen management in production and application.

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference, Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL ISSUE 494 JANUARY-FEBRUARY 2020

Southbank House, Black Prince Road London SE1 75J, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

3

/.

5

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

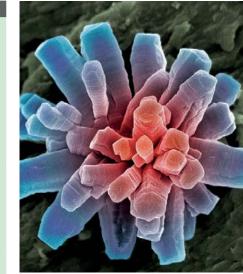
32

33

INDEX 2019

Sep/Oct 8

Sep/Oct 10


Jul/Aug 10

www.fertilizerinternational.com

fe IZEr INTERNATIONAL index 2019

A complete listing of all articles and news items that appeared in Fertilizer International during 2019.

Articles	Issue	Pg
Agronomy/products		
Alternative potash options	Jan/Feb	48
Biostimulants blossom	Nov/Dec	20
Enhanced nitrogen products	Sep/Oct	34
Enhancing urea with sulphur	Sep/Oct	44
Feeding with foliar fertilizers	Jan/Feb	
Improving nutrient use efficiency	Sep/Oct	38
K plus specialities	May/Jun	48
Low viscosity coatings for dust control	May/Jun	58
Maintain quality, minimise loss	Sep/Oct	28
Micronutrient biofortification	Sep/Oct	22
Next generation fertilizer colourants	Sep/Oct	32
The unique benefits of potassium nitrate	Jul/Aug	51
The water-soluble phosphate market	Mar/Apr	50
Conferences		
10th GPCA Fertilizer Convention [Preview]	Sep/Oct	
43rd Annual Clearwater Convention [Report]	Jul/Aug	
AFA Welcome you to Cairo [Preview]	Jan/Feb	
Africa Fertilizer Agribusiness 2019 [Preview]	Sep/Oct	
Phosphates 2019 [Report]	May/Jun	
Phosphates 2019 welcomes you to Florida [Preview]	Mar/Apr	
TFI welcomes you to Chicago	Sep/Oct	49
Companies, projects & business		~~
Agra Group, the Czech innovator	Nov/Dec	
Canpotex: helping feed the world	May/Jun	
EcoPhos heads east	Mar/Apr	
EuroChem's potash ramp-up	Sep/Oct	
Fertilizer International at 50	May/Jun	
Florida: centre of excellence	Mar/Apr	
Kingenta, the global innovator	Sep/Oct	
Kingisepp: Europe's new ammonia giant	Mar/Apr	
Phosphates project listing 2019	Mar/Apr	
Potash project listing 2019	Nov/Dec	
Salitre project profile	Jan/Feb	
Stamicarbon's new UAS technology	May/Jun	
The world's largest potash mine [Esterhazy]	May/June	
US fertilizer industry sustainability	Sep/Oct	50
Country & regional reviews Australia's fertilizer market	Sep/Oct	14
Brazil's fertilizer market		
Fertilizer Canada: well-positioned to compete	Nov/Dec May/Jun	
North Africa: phosphates powerhouse	Mar/Apr	
Turkish market report	Jul/Aug	
Infographic	Jul/ Aug	10
Asia's speciality boom	Jan/Feb	16
Made in Canada	May/Jun	18
The US fertilizer industry	Nov/Dec	
Market analysis		
At the nutrition and energy crossroads [Fertilizers Europe]	Mar/Apr	16
Fertilizer financial scorecard	May/Jun	
Nitrogen market rallies	Mar/Apr	
Phosphate rock to feed the future	Jul/Aug	
The year ahead: expect turbulence	Jan/Feb	
	Mar/Apr	

A calcium phosphate crystal.

Articles	Issue	Pg
Technology, equipment & innovation		
Advanced heat recovery [sulphuric acid]	May/Jun	38
Bedeschi: innovative equipment	Jan/Feb	40
Casale's NPK production technologies	Sep/Oct	62
Going underground with Sirius Minerals	Jul/Aug	44
Great granulation [FEECO]	Nov/Dec	41
Great granulation [J&H equipment]	May/Jun	54
Green ammonia technology	Jan/Feb	33
Greener urea granulation	Nov/Dec	26
Handling, bagging and blending	Jul/Aug	30
NPK production routes	Sep/Oct	57
Phosphate pipe dreams become reality	Jul/Aug	41
Phosphoric acid purification	Nov/Dec	37
Plant revamp experts	Jul/Aug	23
Trace the product, not the packaging	Jul/Aug	20
Nho's who in pumps and piping	Nov/Dec	46
Then and Now		
AGI Fertilizer Systems	May/Jun	16
ArrMaz	Mar/Apr	14
EMT Blending and Bagging	Jul/Aug	14
Köppern	Sep/Oct	12
Young Professionals		
Alice Charlton, Sirius Minerals	Mar/Apr	26
Maria Antip, IRM	Nov/Dec	34
Pote Jarupanich, CPP	Jan/Feb	42

Fertilizer Industry News	Issue	Pg	Fertilizer Industry News
Abu Dhabi			Netherlands
New Middle East fertilizer powerhouse	Jul/Aug	8	ICL opens phosphate recycling unit
Algeria	,		Power to Ammonia conference
\$6bn phosphate megaproject unveiled	Jan/Feb	10	Stamicarbon holds 'Future Day'
Angola	,		Nigeria
Uralchem to build African urea complex	Nov/Dec	10	Dangote signs gas supply agreement
Australia	.,		OCP firms up ammonia plant plan
Casale buys Orica's LDAN technology	Jan/Feb	12	
Centrex prioritises Ardmore project	Jan/Feb		North America
Incitec Pivot to close SSP plant	May/Jun	12	IPNI ceases operations
Karratha project gathers pace	Jan/Feb	11	Market slow-down forces plant shutdow
Perdaman choses Topsoe technology	Nov/Dec		Norway
Ruralco purchase approved	Sep/Oct		Green ammonia & circular economy co
Worley completes Jacobs ECR purchase	May/Jun	12	Yara to pilot green production technolo
Belgium			Yara turns smartphones into nitrogen s
Anti-dumping duty cut	Jan/Feb	9	Poland
EU fertilizer regulation agreed	Jan/Feb	8	Grupa Azoty secures low-cadmium pho
Fertilizers Europe launches new strategy	Jan/Feb	8	Tecnimont to build granulation unit for
Brazil			Russia
New Fertilizantes Tocantins blending plant	Jul/Aug	8	Acron launches new urea unit
Canada			Acron ships through Northeast Passage
Arianne secures second offtake	Jan/Feb		Kingisepp officially opens
Nutrien buys Northern Seed	Nov/Dec	9	New phosphate plant for PhosAgro
Nutrien embarks on buying spree Nutrien offers xarvio digital farming app	Mar/Apr Jul/Aug	10 9	Russia's first UAS plant starts
	Jul/ Aug		Stamicarbon signs ShcekinoAzot contra
Chile	Les (Est	40	Tecnimont wins new Kingisepp contrac
Nutrien sells SQM shares to Tianqi Lithium	Jan/Feb	12	Tecnimont wins Volgafert urea contract
China			TOAZ selects Casale for third urea plan
China scraps fertilizer export tariffs	Jan/Feb	9	Saudi Arabia
Wengfu-Kailin mega merger imminent?	Jul/Aug	8	Ma'aden uses thyssenkrupp technolog
Denmark		~	
Haldor Topsoe unveils green ammonia project	Mar/Apr	9	South Africa
Egypt			Sasolburg plant to start-up in March
Tecnimont wins ammonia plant contract	Nov/Dec		Spain
thyssenkrupp wins fertilizer complex contract	May/Jun	12	Muga project receives environmental p
Eritrea	0	40	Tunisia
\$200 million for Colluli potash project	Sep/Oct	10	Veolia supplies water-soluble fertilizer
Germany	o (o)		United Kingdom
K+S ramps-up speciality production	Sep/Oct	9	Sirius launches Stage 2 financing
Ghana			Sirius launches strategic review
West Africa's largest blending plant opens	Sep/Oct	9	Sirius signs supply agreement with IFF
Hungary			United States
Second nitric acid plant at Kazincbarcika	Mar/Apr	10	Compass and Marrone Bio join forces
India			JDCPhosphate becomes Novaphos
Casale wins nitrate plant order	Jan/Feb	9	Mosaic closes Plant City
Wuhuan to build Talcher urea plant	Nov/Dec	11	Mosaic cuts phosphate production
Indonesia			Mosaic to begin Ona mining operations
Bedeschi secures shiploader contract	Jan/Feb	13	PolyNatura secures offtake agreement
Iraq			Siwertell wins new ship loader contract
Badra starts sulphur shipments	Nov/Dec	12	Threat of tariffs on EU nitrogen product
Kenya			Tiger-Sul to sell Sulphur Mills products
UN adopts sustainable nitrogen resolution	May/Jun	11	
Morocco			
New Morocco-UK agricultural partnership	Mar/Apr	11	OPZ to restart nitrogen production
OCP and Fertinagro announce JV	Mar/Apr		Uzbekistan
OCP awards contracts to Intecsa and Outotec	May/Jun	13	Fertilizer complex plan unveiled

Fertilizer Industry News	Issue	Pg
Netherlands		
ICL opens phosphate recycling unit	May/Jun	11
Power to Ammonia conference	Jul/Aug	12
Stamicarbon holds 'Future Day'	Jul/Aug	11
Nigeria		
Dangote signs gas supply agreement	May/Jun	13
OCP firms up ammonia plant plan	May/Jun	13
North America		
IPNI ceases operations	May/Jun	10
Market slow-down forces plant shutdowns	Nov/Dec	8
Norway		
Green ammonia & circular economy collaborations	Mar/Apr	8
Yara to pilot green production technology	Sep/Oct	9
Yara turns smartphones into nitrogen sensors	May/Jun	
Poland	.,,	
Grupa Azoty secures low-cadmium phosphate	Mar/Apr	9
Tecnimont to build granulation unit for Anwil	Sep/Oct	
	000/000	
Russia Acron launches new urea unit	len /Feb	10
	Jan/Feb	13 9
Acron ships through Northeast Passage	Nov/Dec	
Kingisepp officially opens New phosphate plant for PhosAgro	Jul/Aug May/Jun	
Russia's first UAS plant starts	Jan/Feb	
Stamicarbon signs ShcekinoAzot contract	May/Jun	
Tecnimont wins new Kingisepp contract	Nov/Dec	
Tecnimont wins Volgafert urea contract	Jan/Feb	12
TOAZ selects Casale for third urea plant	Jan/Feb	
Saudi Arabia	5411/100	
	lon/Eob	13
Ma'aden uses thyssenkrupp technology again	Jan/Feb	15
South Africa		
Sasolburg plant to start-up in March	Jan/Feb	13
Spain		
Muga project receives environmental permit	Jul/Aug	12
Tunisia		
Veolia supplies water-soluble fertilizer tech	Nov/Dec	11
United Kingdom		
Sirius launches Stage 2 financing	May/Jun	11
Sirius launches strategic review	Nov/Dec	12
Sirius signs supply agreement with IFFCO	Jul/Aug	11
United States		
Compass and Marrone Bio join forces	Jul/Aug	10
JDCPhosphate becomes Novaphos	May/Jun	10
Mosaic closes Plant City	Jul/Aug	9
Mosaic cuts phosphate production	May/Jun	10
Mosaic to begin Ona mining operations	Jan/Feb	10
PolyNatura secures offtake agreement	Mar/Apr	10
Siwertell wins new ship loader contract	Nov/Dec	9
Threat of tariffs on EU nitrogen products	Sep/Oct	8

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

www.fertilizerinternational.c	com
-------------------------------	-----

What's in issue 494

COVER FEATURE 1

Phosphates 2020

Conference. Paris

COVER FEATURE 2

production goes

COVER FEATURE 3

phosphate industry

Fertilizer

Europe's

green

CONTENTS

The theme of the 26th Arab Fertilizer Association Annual Fertilizer Forum & Exhibition is 'Reshaping the industry future'. This year's Forum will be held at the Semiramis Intercontinental, Cairo, 11-13 February 2020. New AFA Secretary General, Raed Soub, provides a preview of what is the Arab region's showcase annual fertilizer event.

he Arab Fertilizer Association (AFA) is made up of Arab companies and institutions involved in fertilizer production, trade and allied fields. Established in 1975, the AFA's aims include the development of the Arab fertilizer industry - and maximising its contribution to global food security.

Arabic countries are increasingly taking a lead when it comes to the world-wide supply and trade in fertilizers and associated raw materials. Globally, the Arab region possesses around one-third of gas reserves and 70 percent of phosphate rock reserves, for example

The AFA promotes the sustainable use of fertilizers and believes this involves taking a long-term approach and making balanced judgments based on social, environmental and economic considerations.

Left: Panoramic view of Cairo. Egypt.

A warm and hospitable Egyptian welcome

Eng. Raed Soub, the AFA's new Secretary General, is looking forward to welcoming delegates to Egypt in February:

"AFA International Annual Forum is considered the pre-eminent economic fertilizer industry event in the Middle East and Arab region. Attendance is expected to reach 500 participants from more than 30 countries worldwide. They include the chairs of Arab and international fertilizer companies, heads of relevant international associations and organisations, experts, executives and general managers, representing more than 100 companies and industry bodies.

"Accordingly, the Arab Fertilizer Association would like to invite you to participate with more than 400 leaders in the 26th Annual Fertilizer Forum and Exhibition - it is an opportunity that should be seized. Accordingly, note it down and reserve your seat to meet with fertilizer sector decisionmakers from the Arab region and the rest of the world."

Forum programme

The AFA's Forum programme for 2020 include three days of plenary sessions starting on Tuesday 11th February 2020. This year, the Forum's main themes include: Fertilizer Policies

- Factors shaping the fertilizer Industry
- Global market overview and the supply and demand outlook
- Oil & gas markets and their impact on fertilizer production
 - Fertilizer awareness and use efficiency
 - The African fertilizer market
 - Fertilizer industry sustainability
 - Helping achieve world food security
 - Fertilizer industry insurance
 - Updates on the dry bulk freight market
 - Latest innovations in water-soluble fertilizers

Additionally, the wide-ranging commercial exhibition running alongside the Forum allows industry, trade and freight companies, from within and outside the Arab region, to showcase their products and services to a high-level national and international audience of professionals.

Fertilizer International 494 | January-February 2020

		Production ('000 t)			Exports ('000 t)		
Product	2017	2018	Share of world total, 2018 (%)	2017	2018	Share of world trade, 2018 (%)	
Ammonia	18,685	19,220	11	4,490	4,540	25	
Urea	23,200	23,596	15	19,757	20,397	42	
Ammonium nitrate	1,365	1,150	3	59	51		
Phosphate rock	59,402	59,229	28	21,852	21,262	68	
Phosphoric acid (P ₂ O ₅)	8,228	9,323	20	2,436	2,424	55	
TSP	1,854	1,824	71	1,815	1,504	87	
DAP	11,639	12,653	42	9,913	10,900	76	
Potash	2,320	2,436	4	2,166	2,198	4	
Sulphur	10,185	10,185	18	9,146	9,146	22	

tonnes in 2018

rock exports from the region.

Tunisia (9%) and Jordan (6%).

20 percent share of world production and a

55 percent share of world trade. Morocco

Table 1: Arab region fertilizer production and exports, 2017-2018

A growing market share

A natural abundance of a wide-range of raw materials - including natural gas. phosphate rock and potash - has enabled the Arab region to establish itself as a major international fertilizer industry hub. The latest production and export figures reveal how Arab producers have consolidated their leading role in the global production and trade of urea, phosphate rock. phosphoric acid and phosphate products. while also being key players in fertilizer raw materials such as ammonia and sulphur.

Arab fertilizer production is particularly export-oriented and in 2018 the region's exports accounted for around:

- 87 percent of world TSP trade • 76 percent of world DAP/MAP trade
- 68 percent of world phosphate rock trade
- 55 percent of world phosphoric acid trade
- 42 percent of the world urea trade
- 25 percent of world ammonia trade • 22 percent of world sulphur trade.

Arab countries currently have a 11 percent share of total world ammonia production and a 25 percent share of world ammonia trade. Saudi Arabia is the leading Arab ammonia producer accounting for 27 percent of regional production, followed by Egypt (24%), Oatar (20%), Algeria (8%) and Oman & UAE (7% each). Arab producers exported 4.5 million tonnes of ammonia in 2018. The main ammonia exporter is Saudi Arabia with a 35 percent share of regional exports, followed by Algeria (32%), Egypt (14%), Qatar (12%), Oman (3%), Libva (2%) and Bahrain (1%).

Arab countries have a 15 percent share production and 87 percent of world trade OCP is again the market leader, supplying of total world urea production and a 42 percent share of world trade. Production 64 percent of regional TSP output, together is concentrated in Egypt with a 25 perwith Tunisia and Lebanon (14% each). cent share of regional production followed In the diammonium phosphate (DAP)

by Oatar (24%), Saudi Arabia (20%), UAE market. Arab countries contribute 42 per-(9%), Oman (8%) and Bahrain (3%). Urea cent to world production and 76 percent production is highly export-oriented. Qatar, to world trade. Morocco's OCP and Saudi notably QAFCO, is the leading regional urea Arabia's Ma'aden are the leading regional exporter. Its urea exports of 5.4 million producers (45% each) supplemented by protonnes in 2018 accounted for 27 percent duction from Jordan (7%) and Tunisia (3%). of total Arab region urea exports. Arab urea Saudi Arabia is emerging as a major player producers shipped a total of 20.4 million in the world DAP market, being responsible for 33 percent of the Arab regional exports, versus Morocco's 57 percent share Arab phosphate rock producers have a

28 percent share of world production and Jordan's APC is the sole potash proa 65 percent share of world trade, OCP. ducer in the Arab region, its output account-Morocco, is the regional leader with a 58 ing for four percent of world production and percent slice of total Arab region productrade

tion. Jordan (13%), Saudi Arabia (12%), Arab countries, especially those in the Egypt (10%), Tunisia (4%) and Algeria Gulf, enjoy a high profile in the sulphur sec-(3%) are also major regional producers. tor globally, contributing 18 percent to world OCP, the world's largest exporter of phosproduction and 22 percent to world trade. phate rock, has a 53 percent share of the The UAE leads the way with a 46 percent region's exports. Jordan, Egypt and Algeria share of regional sulphur production, supplealso contribute significantly to phosphate mented by sizable output from Saudi Arabia (34%) and Qatar and Kuwait (9% each). Much Arab phosphoric acid producers have a of the region's sulphur output is exported.

Investments in new capacity

again predominates in this sector, with a New capacity continues to be developed 65 percent share of regional production. throughout the Arab region, enhancing the The other main regional producers are Saudi Arabia (22%), reflecting the increascontribution Arab countries make to global ing contribution of Ma'aden, as well as fertilizer capacity and supply. Looking to the future, by 2025, additional production Arab countries also have a sizeable capacity in Arab countries will undoubtedly slice of the triple superphosphate (TSP) raise the region's contribution to world fertilizer production and trade even further. market, amounting to 71 percent of world

www.fertilizerinternational.com

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577

Web: www.bcinsight.com www.bcinsightsearch.com

FERTILIZER INTERNATIONAL **JANUARY-FEBRUARY 2020**

13

15

18

22

23

24

25

North American market conditions are again implicated.

Bad fall 2018 and spring 2019 application seasons in the

US were exacerbated by a large build-up of phosphate import

volumes. The consequent carry-over of phosphate inventory has

remained a concern in North America. "With a poor fall sea-

son and then a disappointing spring season, probably about

800,000 tons of [product] demand was lost. At the same time,

we had one million tons more imports into the US, exacerbat-

ing the problem along with the flooding along the [Mississippi]

North America market conditions were not the sole factor at play,

however. Significant declines in fertilizer use in Turkey, China, Vietnam, Ukraine and France - totalling around 1.1 million nutri-

ent tonnes - also took place in 2018/19. These falls were.

however, largely offset by demand gains in India, Argentina,

Myanmar, Thailand and Russia. The upshot of this is that global

fertilizer demand would have remained stable in 2018/19 were

The latest increase in the sugar price

The cereal price index, in contrast

month lows, pressured by new crop arriv-

Ag commodity outlook: no respite

Strong headwinds - including the US-

China trade war, fallout from African swine

fever (ASF) and low crop prices - will take

their toll on agricultural commodity produc-

Soybeans, coffee and sugar will be par-

Although the bank foresees price

ers next year, predicts Rabobank.

www.fertilizerinternational.com

als and sluggish import demand.

from risks

it not for exceptionally bad US agricultural conditions.

river." Mosaic commented last July.

Not only North America

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

BCInsight

London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com

The year ahead: rebounding from contraction?

We look ahead at fertilizer industry prospects for the next 12 months, including supply and demand growth, and explore the key agricultural, macroeconomic and geopolitical drivers likely to shape the market during 2020.

edium-term prospects for the North America's long shadow

world fertilizer market remain limited. Insipid demand growth of around one percent year-on-year is expected over the next five years. This partly reflects the steady decline in the growth rate of world agriculture. Improvements in nutrient use efficiency and more nutrient recycling are also expected to depress primary fertilizer demand¹. Changes within individual countries are

13

14

15

17

18

19

20

21

22

23

24

25

28

29

30

33

also shaping the overall market. Declining fertilizer consumption in China, in particular, is acting as a downward drag on the world fertilizer market. The continued reliance on the subsidy-dependent Indian market, meanwhile, looks increasingly unsustainable over the longer term, being contingent on continuing government policy support.

North American market conditions had a particularly damaging effect. Indeed, the unprecedented crash in US consumption in spring 2019 (see box) actually tipped world fertilizer demand into reverse in

2018/19¹. This contraction was compounded by a number of other negative factors, including: Low international prices for most crops Unfavourable weather in eastern Australia Currency depreciations in Turkey and

Pakistan, both key fertilizer-importing countries . China-US and Russia-Ukraine trade tensions

· Re-imposition of sanctions against Iran.

Complex demand drivers

Fertilizer demand is influenced by a range of factors, some of which are harder to predict than others. In the short-term, the main drivers of demand include:

- Farm economics and the macroeconomic outlook
- Crop prices and fertilizer-to-crop price ratios
- Crop mix, growing areas and crop yields
- Soil nutrient levels and nutrient replenishment
- Policy, regulation and fertilizer subsidies

 Sustainability, nutrient management and recycling. The importance of these factors varies from country-to-country and region-to-region. Adding to the complexity, these primary drivers are in turn influenced by a host of secondary considerations.

Macroeconomic conditions, by triggering slowdowns or expansions in global, regional and national growth, control overall economic demand and affect the health of agricultural markets. Farm economics and attendant issues such as credit availability and barter ratios have a more direct impact on the ability of farmers to purchase fertilizers.

Crop prices and fertilizer-to-crop price ratios act as key controls on crop nutrient demand as they play a critical role in determining farm buying power and fertilizer affordability. Crop prices in turn are driven by the harvest size annually, stock levels and demand for agricultural commodities. Fertilizer industry analysts pay particularly close attention to the prices of cereals, oilseeds, cotton, sugar and palm oil, the main fertilizer-consuming crop types globally.

The biofuels market is also an important driver of fertilizer demand due to large-scale cultivation of maize and sugarcane for ethanol and oilseed rape (canola) for biodiesel (Fertilizer International 474, p22). Crop failures due to extreme weather events such as the 2015/16 El Niño (Fertilizer International 475, p38) can also affect fertilizer demand in the short-term.

Fertilizer International 494 | January-February 2020

Global growth slows

Worryingly, the International Monetary Fund (IMF) has downgraded its global growth forecast for 2019 to just three percent its slowest pace since the global financial crisis of a decade ago - describing this as a "synchronized slowdown".

"This is a serious climb down from 3.8 percent in 2017, when the world was in a synchronized upswing," commented Gita Gopinath the IMF's chief economist.

- She blamed subdued global growth on: Rising trade barriers
- Elevated uncertainty surrounding trade
- and geopolitics Idiosyncratic factors causing macroeco-
- nomic strain in emerging markets Structural factors in the advanced economies - such as low productivity growth and ageing demographics.

Looking back at last year, unfavourable Global growth looks set to improve modestly to 3.4 percent in 2020, according to the IMF, albeit a downward revision of 0.2 percent from the fund's April projection. However, it describes this recovery as "precarious" and narrow rather than broad-based

> For the advanced economies, growth is actually projected to slow to 1.7 percent in 2019 and 2020. Growth rates in emerging market and developing economies, in contrast, are projected to pick-up from 3.9 percent in 2019 to 4.6 percent in 2020. Turkey, Argentina, and Iran are all expected to recover from shallow recessions. After slowing in 2019, growth is also expected to accelerate in Brazil, Mexico, India, Russia, and Saudi Arabia this year.

Spring 2019: The worst US planting season in history

Record rainfall disrupts

Canadian fertilizer giant Nutrien infamously described spring 2019 as "the worst US planting season in history". It noted that record rainfall in the first six months of the year prevented crop planting over a massive 10 million acres - a new US record. This followed and compounded a poor US fall application season for fertilizers in 2018.

Chuck Magro, Nutrien's president and CEO, said as early as last summer that "US weather in the first half was so severe it nearly eliminated global demand growth for crop inputs", a prediction largely confirmed by IFA's latest global demand estimate. Magro did, however, expect a strong US rebound in 2020 due to lower crop inventories and higher crop prices, with demand for grains and oilseeds still growing.

Phosphate plummets

Based on current IFA estimates, a fall in phosphate use was responsible for more than 75 percent of the total 1.3 million nutrient tonne decline in world fertilizer demand in 2018/19 (Table 1).

The IMF reports that major central banks have relaxed monetary policy to reduce the downside risks to growth. This pre-emptive move should help offset the negative impact of the US-China trade dispute, which alone is expected to cut global GDP by 0.8 percent in 2020. Nevertheless, the IMF has singled out advanced Asian economies, including Hong Kong, Korea, and Singapore, for some of the biggest downward revisions to growth - due to their common exposure to China's growth slowdown and the fallout from that

country's trade dispute with the US. Oil prices fluctuated in 2019 but fell year-on-year. They rallied to exceed \$71/ barrel in April, their highpoint of the year, only to bottom at \$55 in August, before rebounding back above \$60 in September.

Oil prices were pushed higher in the vear's first-quarter by a host of factors. including outages in Venezuela and US-Iran tensions, only to decline from late spring onwards. The prospect of lower demand from a faltering global economy was ampli-

fied by a build-up of US crude stocks. Prices subsequently recovered in September following an attack on two key Saudi Arabian oil installations. This temporarily knocked out 5.7 million barrels per day of production - about half of Saudi Arabia's total and equivalent to 5 percent of global oil production. This stoked fears of oil market disruptions and escalating tensions with Iran.

Looking ahead, average oil prices, projected at \$61.8 a barrel in 2019 - itself a 9.6 percent year-on-year decrease from the 2018 average - are forecast to decline further to \$57.9/barrel in 2020, and ultimately to around \$55/barrel by 2023 - a trend linked to "subdued medium-term

Food prices surge to two-year high

downwards

The November 2019 vegetable oil price index (150.6 points) reached its highest level in 18 months. The rise was led by firming palm oil values, although soy, rapeseed and sunflower oil prices also increased. International palm oil quotations rose for the fourth consecutive month in November, continuing the recent rebound from the price lows that have characterised the past 12 months.

Fertilizer International 494 | January-February 2020

ticular key commodities to watch in 2020, in its view increases in 2020, coffee and sugar are

index (181.6 points in November) was driven by the expectation that world sugar consumption will surpass production. Poor growing conditions in Thailand, India, France and the US in 2019/20 have increased the chances of a fall in global stocks. demand prospects".

declined to 162.4 points in November. Large export supplies and stiff export competition weighed on international wheat prices, while rice values also fell to six-

As 2019 drew to a close, the FAO's Food Price Index (FPI) reached a 26-month high in November 2019, averaging 177.2 points. This pushed the index up by nearly 10 percent (15.4 points) from a year ago. November's price hike - driven largely

by significant surges in the prices of meat and vegetable oils - pushed the overall value of the FPI to its highest level since September 2017. Sugar prices also increased in November, while dairy prices remained steady, and cereal prices drifted

Millions of the world's farmers face impov-**JANUARY-FEBRUARY 2020** erishment in 2020 because of persistent geopolitical risks and intense price pressures, according to the annual outlook from agribusiness specialists Rabobank.

Southbank House, Black Prince Road www.bcinsightsearch.com

12

14

15

17

18

20

21

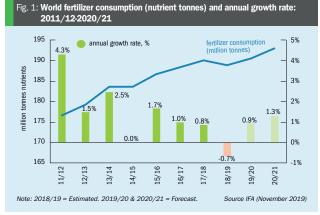
23

24

25

27

28


29

30

31

32

33

still likely to trade below the cost of production for much of the year - damaging the livelihoods of millions of coffee and sugar farmers as a result. The oversupply of coffee and low prices in 2019 have already pushed millions of farmers mostly in Central America, East Africa and Southeast Asia - into poverty.

tinuation or escalation in the US-China trade war, alongside further increases in productivity on the back of more benign global weather, and the ongoing impact of the ASF crisis in Asia. These factors mean farmers will need to cope with further uncertainty in 2020, after years of relatively low prices.

Geopolitics, particularly trade disputes, looks set to be the key driver of grain and oilseed prices this year, in Rabobank's view. The sovbean market in particular will continue to be at the mercy of the US-China trade war, although coffee and sugar prices look set to recover from decade lows.

Stefan Vogel, Rabobank's head of agricommodity markets, said: "The world's farmers have endured a difficult year with

headwinds caused by geopolitical tensions, disease and weather. Yet sadly for them, 2020 looks like offering no immediate respite.

"In the worst-case scenario, coffee farmers face the prospect of stubbornly low prices while trade tariffs threaten soybean farmers. "The hope is that the worst does not

In 2020, global agriculture faces a con- occur. In a more favourable scenario, the US and China resolve their trade dispute, China begins to replenish pork herds, stimulating demand for soybeans, and the coffee market rebalances, increasing the prices paid to farmers for their beans."

There are downside risks, however, with Rabobank warning of a significant chance of recession in US, the world's largest economy, in the second half of 2020 – a downturn that could reduce global demand for staples such as coffee and cocoa. The main impact of such a recession, though, would be a synchronised global slowdown. This could weaken currencies in key commodity-producing countries with negative consequences. A weaker Brazilian real, for example, would largely thwart any

Fertilizer demand

Following an unexpected market contraction last year, the International Fertilizer Association (IFA) expects world fertilizer demand to recover slowly as we move into 2020 and beyond.

Global fertilizer consumption declined year-on-year in 2018/19 for the first time in a decade, according to IFA estimates, falling by 0.7 percent to 188.8 million nutrient tonnes (Table 1, Figure 1)². This decline in global demand was especially marked for one nutrient (phosphate) and strongly affected by one factor in particular – a sharp weather-related contraction in US fertilizer use (Fertilizer International 492, p4; see box). Indeed, North American fertilizer demand fell by an unprecedented 5.7 percent in 2018/19, equivalent to 1.4 million nutrient tonnes2.

IFA expects fertilizer demand to return to growth this year driven by a strong recovery in North America. However, the overall 0.9 percent recovery in global demand forecast in 2019/20 - equivalent to a 1.8 million tonne increase to 190.6 million nutrient tonnes (Table 1) - is still below the mediumterm trend. It also represents a major downgrade in fertilizer consumption since IFA's previous June 2019 forecast².

Nevertheless, in a complete reversal on the previous year, demand in 2019/20 should be boosted by a resumption of phosphate consumption, with a healthy year-on-year percentage rise in demand for this nutrient.

The market recovery in 2019/20 will also be aided by rising fertilizer use in India. Brazil, Russia and Canada. This will offset a significant - albeit largely expected decline in consumption in China of around one million nutrient tonnes. Fertilizer use is also expected to fall in Southeast Asia (Indonesia, Malaysia, Thailand), linked to unfavourable weather and lower palm oil prices, and parts of Latin America (Colombia) in 2019/20².

recovery in coffee and sugar prices. Table 1. Global fertilizer demand forecast, million nutrient tonnes*

Nutrient	2020/21f (million tonnes)	2019/20f (million tonnes)	2018/19e (million tonnes)	2017/18 (million tonnes)	2016/17 (million tonnes)
N	108.2 (+0.9%)	107.2 (+0.6%)	106.5 (+0.1%)	106.4	107.1
P ₂ O ₅	46.5 (+1.2%)	46.0 (+1.5%)	45.3 (-2.1%)	46.3	45.4
K ₂ 0	38.3 (+2.5%)	37.4 (+0.9%)	37.0 (+-1.0%)	37.4	35.9
Total	193.0 (+1.3%)	190.6 (+0.9%)	188.8 (-0.7%)	190.1	188.8
*Year-on-year perce	entage increase in parentheses.	e=estimate. f=forecast.		:	Source: IFA (November 2019)

LEWIS®

LEWIS®

Minerals www.minerals.weir

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 **Conference**. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL **JANUARY-FEBRUARY 2020**

BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

Looking further ahead, fertilizer consumption is forecast to accelerate into next year, with growth returning closer to the medium-term average. IFA's preliminary forecast is that growth in global fertilizer use will pick up by 1.3 percent and total 193.0 million nutrient tonnes in 2020/21 (Table 1, Figure 1). This is based on an expectation of higher crop prices and average weather conditions. Increases in potash consumption are forecast to be particularly firm. Growth next year, although broad-based, looks likely to be led by Indonesia Brazil and India²

Global production and trade

10

18

22

23

25

28

30

32

33

Between 2018 and 2023, the global industry expects to invest close to \$110 billion in constructing 70 new fertilizer manufacturing units, these providing a total of 65 million tonnes of extra production capacity. Large-scale investments in nitrogen capacity will take priority, accounting for two-thirds of planned capital expenditure over the next five years1.

The global supply of primary fertilizer raw materials (ammonia, phosphate rock and potash) is expected to grow by 2.2 percent to 260 million tonnes nutrients in 2020². This total does, however, include tonnages for industrial and other non-fertilizer uses estimated at 51 million tonnes in 2019

Unusually, increases in potash production capacity were outweighed by decreasing ammonia and phosphoric acid capacity in 2019, resulting in a net reduction in global capacity of 1.7 million tonnes nutrients, according to IFA estimates. This capacity contraction in 2019 reflected already announced closures and mothballing of ammonia, potash and phosphate production units. This contraction looks like being a one-off, however, and is expected to be reversed by a substantial 6.3 million tonne increase in nutrient supply in 2020².

Urea: Preliminary estimates suggest that global urea exports - equivalent to almost 30 percent of world production (176 million tonnes) - increased marginally (+0.6%) to 48.5 million tonnes in 2019 China's return to the urea market was a major development last year. Urea exports to Indonesia, Canada and Ukraine increased significantly in 20192.

World urea capacity is projected to grow by just one percent in 2019 and 2020 to reach 213 million tonnes. Capacity is expected to recover this year after faltering in 2019. The capacity stall was linked to the ongoing decrease in Chinese capacity (-2.4 million tonnes) plus plant closures or mothballing in Romania, Kuwait and Brazil (-2.4 million tonnes). New urea capacity is, however, expected in India (+2.6 million tonnes). Nigeria (+2.4 million tonnes) and Azerbaijan, Uzbekistan and Russia (+1.5 million tonnes) in 2019 and 2020². Phosphates: Global production of fin-

ished phosphates increased in 2019. rising to 74 million tonnes, according to preliminary IFA estimates. This was thanks to higher monoammonium phosphate (MAP) output and a strong recovery (+9% year-on-year) in diammonium

phosphate (DAP) production. DAP exports expanded by seven percent year-on-year in 2019, with extra tonnages emerging from Morocco, Saudi Arabia, China and the US. DAP import growth was led by Turkey. India and Canada, MAP exports also increased strongly in 2019, being partly driven by with a robust recovery (27% year-on-year) in internationally-traded Chinese product, Rising MAP sales to Brazil and Canada were particularly noteworthy2,

Incremental increases in finished phosphates capacity are forecast in 2019 and 2020. These will mainly occur in Morocco, Saudi Arabia and Egypt (+1.4 million tonnes P₂O₅ collectively) together with capacity expansions in Russia, Brazil, India and Turkey. This will be partially offset by plant shutdowns and mothballing in North America².

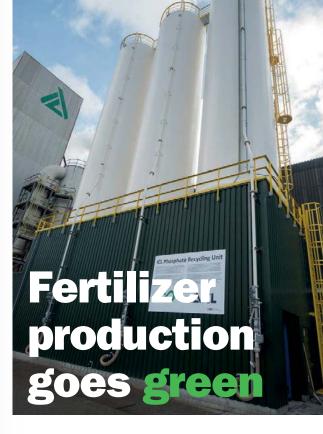
Potash: The soft conditions in the global potash market that prevailed in 2019 could well continue into 2020. Indeed, IFA expects the potash market to remain in a supply-driven phase in the near term, with new capacity projects in Russia and Belarus adding substantial exportdedicated production volumes. IFA is, however, forecasting a recovery in global MOP (muriate of potash) trade this year, with world demand rising to 53 million tonnes, a level last seen in 2017/18².

World potash capacity is forecast to rise by 4.8 percent (+2.9 million tonnes K_20) during 2019 and 2020 to reach 62.8 million tonnes K₂O. This will be largely driven by an expansion in Russian MOP capacity (+1.4 million tonnes), Preliminary figures, however, suggest world potash capacity grew only marginally in 2019 (+0.2%, +0.1 million tonnes K₂0). Restructuring in Germany and the UK removed significant MOP capacity last year (-0.4 million tonnes), partly offset by robust growth in sulphate of potash (SOP) capacity (+0.3 million tonnes)2.

Summary analysis

Fertilizer demand growth has been on a downward trajectory over the last ten years. In retrospect, the market seems to have undergone a sea change around a decade ago, Global fertilizer demand - which dropped sharply in 2008/09 but rebounded in 2009/10 and 2010/11 - has subsequently grown at a slower pace. The average annual growth rate between 2011/12 and 2017/18, for example, was just 1.2 percent. That compares with growth of 2.6 percent p.a. between 2001/02 and 2007/08, the equivalent period in the previous decade².

Indeed, global growth in fertilizer use has slowed sharply in recent times, falling from 4.3 percent in 2011/12 to 0.8 percent in 2017/18. This growth slowdown has been partly driven by lower agricultural crop prices. Other factors include government policies and adverse weather in large consuming countries2.


Contracting consumption in China since 2015/16 has acted as a drag on world fertilizer use. It is therefore, India, once again, which looks set to be the strongest driver of market growth in 2020 and into 2021. although the subcontinent is no longer the engine of demand growth it once was. Instead, since 2011/12, growth in world fertilizer consumption has become much more dependent on smaller, more dynamic markets in three regions: Latin America (Brazil. Mexico), Eastern Europe (Ukraine, Russia) and Africa (Ethiopia, Nigeria, South Africa). A notable feature of the current short-term outlook is the volatility in fertilizer demand with a series of alternate year-on-year expansions and contractions expected in a num-

ber of key markets. This is true of the United States, Indonesia and Argentina, Fertilizer consumption in the US, for example, is likely to experience zero growth between 2017/18 and 2020/21 because of this volatility.

Major uncertainties and downside risks also abound. These include the slowing pace of world economic growth, the state of US-China trade relations, and the serious swine fever outbreak in China and neighbouring countries

References

1. IFA, 2019. Executive Summary Fertilizer Outlook 2019-2023. 87th IFA Annual Conference, 11-13 June 2019, Montreal, Canada, International Fertilizer Association (IFA) 2. IFA, 2019, Short-Term Fertilizer Outlook 2018-2019. IFA Strategic Forum, 18-20 November 2019, Versailles, France, International Fertilizer Association (IFA)

Leading nitrogen and phosphate producers. including ICL, OCP and Yara, have all launched maior sustainable fertilizer production projects. The aim is to incorporate recovered nutrients or low-carbon feedstocks into their manufacturing processes.

he last 18 months has been a breakthrough period for fertilizer industry

sustainability. A number of major fertilizer producers, in tandem with leading technology providers, have committed themselves to incorporating low-carbon feedstocks and/or recovered nutrients into their manufacturing processes.

Fertilizer majors such as Yara International have gone outside of the sector to find world-class partners with expertise in low-carbon-technology and the circular economy. They include waste management giant Veolia. Nel Hydrogen - the world's largest electrolyser manufacturer - and the French multinational electrical utility ENGIE.

Such partnerships demonstrate the fertilizer sector's seriousness about developing new sustainable production technolo-

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL

JANUARY-FEBRUARY 2020

BCInsight

Southbank House, Black Prince Road

the trade association's 30th anniversary, has two major themes: firstly, the importance of plant nutrients in moving towards a more productive, sustainable food svstem in future and, secondly, the need to shift to lower-carbon or carbon-free fertilizer manufacturing, particularly for ammonia production. The future of EU farming will involve

GLOBAL STEWARDSHIP

Left: ICL's phosphate

recycling unit, Amsterdam.

gies and implementing these commercially

at large-scale. In this article, we describe

how the fertilizer industry is embracing the

circular economy and starting an irrevocable shift towards a low-carbon future.

European-based companies and institu-

tions, in particular, are leading the way

when it comes to taking practical steps

towards low-carbon fertilizer production and

nutrient recovery. Casale, Haldor Topsoe

and thyssenkrupp Industrial Solutions, for

example, are all developing 'green' ammo-

nia production processes (Fertilizer Interna-

long-term strategy for the European ferti-

lizer industry at the end of 2018.

Fertilizers Europe helped set the tone by launching 'Feeding Life 2030', its new

The strategy, released to coincide with

Europe at the vanguard

tional 488, p33).

"applying more knowledge per hectare", according to the strategy, an approach which echoes Yara International's "knowledge grows" ethos.

"Rapid technological development and innovation offer the prospect of meeting future food needs more sustainably. Digital farming offers big potential for further progress in nutrient management in Europe." said Javier Goñi del Cacho, president of Fertilizers Europe and Fertiberia's CEO.

Fertilizer manufacturing in Europe will also need to reduce its carbon footprint to meet EU climate and energy policy objectives. The strategy sets out a vision in which around 10 percent of the EU's ammonia production by 2030 will come from hydrogen generated by water electrolysis powered by renewable energy. Large-scale and low-cost production of ammonia via water electrolysis - the so-

Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

London SE1 7SJ, England

www.fertilizerinternational.com

12

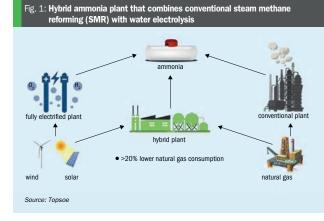
13

14

16

18

19


23

25

28

32

33

be economically-viable within a decade. according to some estimates.

The strategy also proposes a valuable role for ammonia as a liquid energy carrier and storage medium, to help level-out the fluctuations in intermittent renewable electricity generation.

"Europe is forging ahead with the transition to clean energy, and is relying increasingly on renewable energy sources. We are a part of this drive. The nitrogen fertilizers industry, as a producer of ammonia. offers the key to unlocking clean energy potential by acting as a carbon-free energy storage medium," commented Javier Goñi del Cacho.

'Feeding Life 2030' is aligned with EU policy for a decarbonised and carbon-neutral European economy by 2050. This is to be achieved by a mix of energy efficiency. higher renewable electricity generation, adoption of low-carbon energy carriers, and carbon pricing.

Europe should be well-placed to take advantage of any shift to green ammonia production as the region has world-leading engineering companies for both wind power generation and water electrolysis. thyssenkrupp Industrial Solutions (tkIS), for example, is a global leader in the manufacture of large-scale electrolysis units.

One pathway for introducing and rollingout green ammonia technology is installing water electrolysis units as part of revamps, creating hybrid steam methane reforming (SMR)/electrolysis ammonia plants (Figure 1).

Conventional SMR could also be converted into a carbon-free production process

using carbon capture and storage (CCS) the so-called 'blue' ammonia route. CCS may become a reality in parts of Europe by 2030, suggests Fertilizers Europe. The use of ammonia as a liquid energy carrier could also grow into a lucrative endmarket for European producers. Such a

development could help Europe's nitrogen industry diversify and become an important and integral part of the EU's emerging lowcarbon energy infrastructure.

Yara creates low-carbon and circular economy business units

In January 2019, Norway's Yara International stepped up its sustainability efforts by creating two new business units. The two units. Decarbonise and Circular Economy. are headed by Sam Van Den Broeck and Maria Silvia Tonti, respectively.

The Decarbonise unit has been given the task of reducing Yara's overall greenhouse gas (GHG) emissions. Its role will include the ramp-up of zero carbon nitrogen (e.g. green ammonia) production. reducing in-field agricultural GHG emissions and developing green energy carriers. The Circular Economy unit will take a lead on resource efficiency - doing more from less. It will also seek to generate value from waste through nutrient recovery

and recycling Yara kick-started its decarbonisation efforts in February last year by unveiling a new partnership with giant French electricity utility ENGIE. The focus of this new collaboration will be the use of green technology in fertilizer production.

The two companies are initially working together on a feasibility study. The goal is to design a green hydrogen plant that can be integrated with Yara's existing ammonia plant in Pilbara, Western Australia. The Pilbara region is the ideal location for the study, says Yara, due the abundance of sun and seawater - the two key constituents in renewable hydrogen production. The ultimate goal is to convert the

Pilbara plant from its complete reliance on natural gas to an ammonia plant that sources a significant share of its hydrogen needs from renewable power instead. Achieving this goal will help Yara cut Pilbara's CO₂ emissions.

The two partners have much to gain from the new collaboration. ENGIE's is aiming to become a major player in renewable hydrogen, for example, while Yara is stepping up efforts towards making carbon-free fertilizers. Renewable hydrogen generation is the starting point for CO2-free ammonia production - green ammonia - which in turn is a key ingredient for carbon-free fertilizer production

"Yara and ENGIE have the complementary expertise and experience to take on such a complex project, but the key ingredient in this venture is our mutual commitment to a healthier planet and a sustainable future," said Yves Bonte, Yara's executive vice president for new business.

"This project is in line with ENGIE's goal to be a pioneer in the new energy world, a decarbonized world, accessible to everyone everywhere," added Michèle Azalbert, the CEO of ENGIE Hydrogen.

Because renewable electricity generation from solar and wind sources is highly variable, green hydrogen looks set to become a key component in future energy networks. But reducing the costs associated with producing, storing and transporting green hydrogen will be vital for its future deployment. Valuably, the green hydrogen plant at Yara Pilbara will allow a real-world. real-time analysis of costs and processes.

"Together, Yara and ENGIE are acting to better understand how to make green hydrogen technology work. For Yara, it is of particular importance to understand how this can help us to make our fertilizers carbon-free at an acceptable cost," said Bonte, in conclusion.

Yara has also taken a first step towards integrating fertilizer production within Europe's emerging circular economy. Last January, it signed an agreement with French conglomerate Veolia to develop a

Fertilizer International 494 | January-February 2020

Yara's Pilbara ammonia plant. Western Australia.

circular economy approach to nutrient recycling, one that involves the creation of nutrient loops.

The idea is to integrate Veolia's access to growing volumes of recovered nutrients - and its expertise in organic materials handling - with Yara's mineral fertilizer production expertise and crop nutrition knowledge. The new partnership hopes to begin closing the nutrient cycle by joining together the start and the end of today's linear food production chains.

"Reducing global resource depletion and nutrient loss by increasing the recycling of nutrients such as nitrogen and phosphorus is an important task," commented Svein Tore Holsether, president and CEO of Yara. "The collaboration with Veolia is a contribution to our mission to responsibly feed the world and protect the planet."

Veolia and Yara have agreed to work together to scale-up nutrient recycling. This will require new business models for highquality fertilizer production based on nutrient recycling. The local recovery, processing, distribution and sales of nutrient products will be a cornerstone of the new circular economy approach.

The two companies will also create reverse 'food-to-agriculture' value chains by collecting and processing food surpluses in cities. This will link together the organic fertilizer expertise of Veolia subsidiary Sede Angibaud with Yara's market knowledge of organomineral fertilizers and soil improvement products - for both rural and peri-urban agricultural markets. Finally, Veolia and Yara will also develop new business opportunities based on industrial symbiosis. The goal will be to integrate nutrient and chemical flows between different industrial companies and sectors, by exchanging by-products, raw materials and waste.

"We are delighted that Yara has chosen Veolia to support its circular economy strategy. Veolia and Yara already aim to have several new initiatives fully operational by 2024, including the launch of new fertilizer products and the start-up of nutrient recovery installations in several major European cities." said Veolia chairman & CEO Antoine Frérot, "The collaboration between our companies is a step closer to effectively closing the nutrient cycle."

A circular economy loop, which recycles ammonia by composting green waste and wastewater sludge, has already been set up by Yara and Veolia. The recycled ammonia is processed to produce sodium nitrate. This chemical is then reused in wastewater treatment plants to prevent odour and corrosion.

The new EU fertilising products regulation will permit and promote the use of recovered nutrients in crop nutrition products. Several EU member state are also putting in place their own national regulations limiting waste disposal and mandating nutrient recovery.

The economic potential of nutrient recycling in the European fertilizer market could be as high as two billion euros, according to some estimates.

To encourage a fundamental redesign of the food value chain, Yara and Veolia are creating an umbrella group, the Nutrient Upcycling Alliance. Farmer associations, food brands, retailers, waste stream managers, and municipal and government bodies, will all be invited to join.

GLOBAL STEWARDSHIP

Yara International has teamed up with Nel Hydrogen to pilot water

electrolysis technology at its Porsgrunn ammonia plant in Norway.

The two Norwegian companies are collaborating on the installation

of a five megawatt (MW) capacity electrolyser at the Porsgrunn

plant by 2022. This is expected to contribute around one percent

Nel's next-generation, pressurised alkaline water electrolyser

technology will be tested by Yara under real operating conditions

as part of a collaborative project unveiled in August 2019. The

goal is to produce hydrogen commercially using renewable electric-

ity. This in turn will be used for either sustainable fertilizer produc-

The project is supported by Norway's Research Council, Innova-

Yara views the link-up with Nel as an important step towards it

"We're excited to formally launch the partnership with Nel and

work towards developing green ammonia and low carbon fertilizer.

We have already removed about half of our direct GHG emissions

in the past few decades, and we're working towards carbon neu-

trality by 2050. Producing fertilizer with carbon-free hydrogen will

be a very important step towards that goal," said Yara's Tove

Andersen, its executive vice president for production.

tion Norway and Enova through the PILOT-E programme – a funding

scheme that aims to speed-up the development and implementa-

Porsgrunn green ammonia project

to Porsgrunn's hydrogen output initially.

tion or the production of green ammonia.

ambition to become carbon neutral by 2050.

tion of green energy technology.

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer production goes green

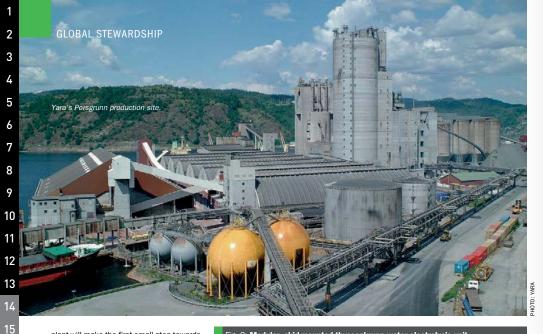
COVER FEATURE 3

Europe's phosphate industry

"We are very pleased with the partnership with Nel. Our ammonia

Pumps specialist for the fertilizer industry

Rheinhütte Pumpen is a specialist in the field of pumping fluids such as nitric acids, ammonium nitrate, sulphuric acid and phosphates for many decades. Optimal customer and engineering solutions are provided in a large selection of more than 30 metal, plastic and ceramic materials combined with special shaft seals



BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

plant will make the first small step towards carbon-free fertilizer production. When further developed. Yara Porsgrunn will be in a unique position also due to the low carbon footprint from our nitric acid plants," added Jon Sletten, the Porsgrunn plant's manager.

Water electrolysis holds the key

18

20

23

25

28

Yara says its ultimate goal is to be a "market shaper" for green ammonia and low-carbon fertilizer production. Nel Hydrogen, being the world's largest electrolyser manufacturer, should be a strong partner in helping bring this about.

Nel can trace its roots back to 1927, when Norsk Hydro - the company which later became Yara - first developed largescale electrolysers to generate hydrogen to produce ammonia for fertilizer manufacture. Nel has sold more than 3,500 electrolyser units in 80 countries globally since it first began selling these in the 1970s.

Today, Nel manufactures both alkaline and PEM (proton exchange membrane) electrolysers, and operates production plants in both Notodden, Norway, and in Wallingford, Connecticut in the US. The company is currently developing the next generation of large-scale, pressurised alkaline electrolysers as well as larger PEM stacks. These should help deliver substantial cost reductions Nel has also unveiled plans to scale-

up its manufacturing capacity by opening a new production plant for alkaline electrolvsers at Herøva Industrial Park in Nor-

Fig. 2: Modular, skid-mounted thyssenkrupp water electrolysis unit

way. This should increase its electrolyser production capacity by 360 MW/year initially, with a further potential expansion to 1 GW/vear in future.

Green ammonia is a hot industry topic currently, particularly in Europe. Another low-carbon energy collaboration, this time in the Netherlands, was announced between Proton Ventures and Duiker Combustion Engineers (CE) in July last year. The strategic link-up will turn green ammonia - generated by Proton's mini ammonia plants from renewable electricity - into high temperature heat using Duiker CE's stoichiometry controlled oxidation

(SCO) technology. Hans Vrijenhoef, CEO Proton Ventures, said: "The SCO technology of Duiker CE

opens new possibilities in applying local ammonia production ... such as the conversion of power plants to cleaner fuels."

thyssenkrupp launches new water electrolysis tech

Germany engineering giant thyssenkrupp is also focussed on making hydrogen production from renewable energy economically feasible. The company launched a new industrial-scale water electrolysis unit in mid-2018. The new highly-economical electrolysis unit developed by thyssenkrupp produces hydrogen at scale by using a large area active cell (2.7 m²) at an efficiency of more than 82 percent. The innovative cell

Fertilizer International 494 | January-February 2020

incorporates 'zero-gap' technology which

almost eliminates the distance between electrodes and the membrane Sami Pelkonen, CEO of the electrolysis

and polymers technologies business unit at thyssenkrupp Industrial Solutions said: "With our water electrolysis process, we have successfully brought a technology to market maturity which is of major significance for the energy transition. Green hydrogen, as a clean, CO₂-free starting point, can be used in a variety of ways; for energy storage, mobility, and the production of sustainable chemicals "

Importantly, the technology is modular. The pre-fabricated skid-mounted modules are easily integrated into existing plants (Figure 2). Projects can be scaled-up by adding a number of these modules, potentially delivering hundreds of megawatts of capacity. The technology has already been commissioned successfully as part of thyssenkrupp's Carbon2Chem project. This is using steel production emissions as raw materials for chemical production.

Haldor Topsoe unveils green ammonia project

Haldor Topsoe, is collaborating with academia and industry on the new SOC₄NH₂ research project. The partners are developing solid oxide cell electrolysis for CO2-free green ammonia production. The project is aiming to demonstrate the technology and bring it closer to commercial breakthrough

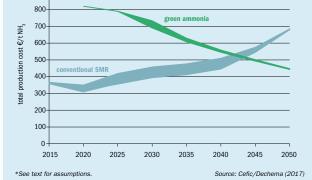
Topsoe, a world-leader in electrolysis technology and ammonia production, is heading the DKK 26.8 millefficient storage of ion project. The University of Aarhus, Technical University of Denmark, Energinet, Vestas, Equinor and Ørsted Wind Power are other participants. The Danish Energy Technolenergy density ... ogy Development and Demonstration Program (EUDP) is backing the project through DKK 15.9

million of funding support. "We expect that ammonia can be used for transportation and efficient storage of energy. The greatest advantage of ammonia is that it has a high energy density which makes it an effective fuel and energy storage option - and it can thereby solve some of the most important challenges of creating a sustainable energy system of the future," said project leader, John Bøgild Hansen, senior principal scientist at Haldor Topsoe.

900

"In the Foulum research facility we will demonstrate an especially efficient technology which will enable us to produce ammonia solely by using certified windpower, water and air. The method is much more climate-friendly than conventional ammonia production which today makes up as much as one per cent of the world's total energy consumption and CO₂ emissions," said Lars Ottosen, head of biological and chemical engineering, University of

∆arhus Ammonia can be used for transportation and energy. The greatest advantage of ammonia is that it has a high over the world. Vestas


> of energy necessary to convert other sectors to a sustainable future." added Bo Svoldgaard, senior vice president, innovation & concepts Vestas

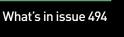
The SOC₄NH₂ project plans to make a major contribution to the energy transition. In doing so, it hopes to strengthen Denmark's leading international position in renewables and other green technologies - providing the country with a strong foundation for future growth, exports and jobs.

"We see an interesting potential in using ammonia for creating more stable green energy production - one that can be stored - and at the same time start electrifying heavy transport and the chemical industry. With more than 100 GW wind energy installed all

has demonstrated that wind energy can deliver the large amounts If and when the above conditions are met, the massive ramp-up of investment neces-

Fig. 3: Projected cost reductions for green ammonia production vs conventional steam methane reforming (SMR)*

Cost reductions and investment crucial


Cefic, the European Chemical Industry Council, published a landmark study on low-carbon energy and feedstocks in 2017. This set out a pathway for the transition of Europe's chemical sector to carbon neutrality by 2050 (Fertilizer International 483, p20). The Cefic study suggested that green

ammonia produced using renewable energy could become cost-competitive with conventional ammonia production in Europe within 20-25 years (Figure 3). This would require green ammonia production costs to fall below €500/tonne - plus a number of major assumptions, including: A stable electricity price of around €40/ MWh

- Drastic falls in the investment (capex) cost of water electrolysis units from €1.450/kW to €375/kW
- A large rise in the carbon price (CO₂ emissions certificates) in Europe to €196/tC0₂.

sarv is likely to be the main barrier to the low-carbon transition. Cefic calculated, for example, that an industry-wide transition to green ammonia in Europe - in terms of retrofitting and new plant capacity - could be as high as €76.6 billion out to 2050. That is 7-8 times higher than the business-asusual investment of €9.1 billion expected over the next 30 years. These figures do

www.fertilizerinternational.com

COVER FEATURE 1

CONTENTS

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL **JANUARY-FEBRUARY 2020**

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

www.fertilizerinternational.com

GLOBAL STEWARDSHIP

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer green

COVER FEATURE 3

Europe's

production goes

phosphate industry

BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

not include the extra investment necessary to decarbonise urea production, potentially an additional €32.9 billion (Fertilizer International 483, p20).

OCP targets renewable feedstocks

Morocco's OCP Group has launched its own 'green' fertilizer production initiative in collaboration with Germany's Fraunhofer Institute.

10

12

13

14

18

19

20

22

23

24

25

27

28

29

30

32

33

The two partners will work jointly on producing hydrogen and ammonia using renewable electricity. The collaboration forms part of memorandum of understanding (MoU) between OCP Group and the Fraunhofer Institute for Microstructure of Materials and Systems (IMWS) signed in 2018.

Fraunhofer IMWS will help OCP to develop a green ammonia project at the Green Energy Park in Ben Guerir, Morocco The option of establishing an African Institute for Solar Ammonia is also being discussed. A pilot plant to produce hydrogen from renewable sources is already being built in Leuna, Germany, as part of a project led by the Fraunhofer Institute.

Professor Ralf Wehrspohn, director of Fraunhofer IMWS, said: "Green hydrogen and green ammonia offer tremendous potential to... supply raw materials to the fertilizer industry. They also reduce the industry's dependency on oil, natural gas and any other fossil fuel."

Mostafa Terrab, OCP Group's chairman, said: "Responsibility for the environment has always been important to us... as a fundamental principle of our circular economy approach. The use of green ammonia fits in with this strategy. It can help conserve valuable resources and provide our customers with sustainable new products. That's why we are looking forward to strengthening our cooperation with Fraunhofer."

ICL opens phosphate recycling unit

ICL opened an innovative phosphate recycling unit at its Amsterdam fertilizers production site in the Netherlands in 2019. In an industry first, the new unit allows

ICL to incorporate recovered phosphate from secondary sources in the industrialscale production of phosphate-based fertilizers

The unit, which uses large-scale alternative sources of phosphate such as sewage sludge ashes and bone meal ashes, was formally opened by officials from the

City of Amsterdam and the province of North Holland in March last year ICL described the unit as a "circular innovation" and an example of the company's strong commitment to sustainability.

"By using phosphate from alternative sources, we provide society with an innovative circular solution and also prepare ourselves for a future where phosphate rock will become an increasingly scarce source. This installation will allow ICL to continue

with the production of fertilizers that help feed the world for many years to come in a sustainable way," ICL said in a statement. The company made clear that the unit was just the start of its plans: "Our ambition is to further increase the use of phosphate coming from alternative sources in the coming years, with ICL as one of the international frontrunners in phosphate recycling.'

ICL to sell recovered nutrients

ICL Specialty Fertilizers have also entered into a long-term sales and distribution agreement and strategic partnership with Vancouver-headquartered Ostara Nutrient Recovery Technologies.

As part of these new agreements, ICL will now market and sell Ostara's Crystal Green, a struvite-based phosphate fertilizer, into the EU, supplying the turf and lawncare markets

Crystal Green is recovered from municipal wastewater at 15 plants worldwide using Ostara's Pearl technology. It is a continuous-release fertilizer incorporating the company's trademarked Root Activated phosphorus.

Advantageously. Crystal Green contains virtually no cadmium or other heavy metals. It also only releases phosphorus, nitrogen and magnesium in response to the organic acids produced by growing roots. This ensures that phosphorus is available for uptake when required by plants, while at the same time reducing the environmental impact caused by leaching and nutrient run-off

"It is more important than ever before to grow higher quality turf grass with lower inputs, and we at ICL Specialty Fertilizers are dedicated to bringing new products and technologies to our global network that support this philosophy," said ICL spokesman Arne Padt. "Our partnership with Ostara provides ICL Specialty Fertilizers access to a unique, clean, circular economy phosphorus source with a technology that has proven to give better rooting to turf grass than traditional phosphorus sources. Padt added: "As phosphorus is recog-

nized by the EU as a critical raw material, ICL Specialty Fertilizers is proud to use this clean phosphorus source derived from recycling." "Ostara is forging the path in resource

recovery and reuse. Together [with ICL Specialty Fertilizers] we are excited to offer the European market a product that exemplifies the circular economy concept while also improving plant health," said Molly Biedenfeld, Ostara's vice president for nutrient market development and sales. "With the EU's increased scrutiny of cadmium levels and other heavy metal concentrations in fertilizer. Crystal Green is uniquely positioned to benefit EU market participants.'

www.fertilizerinternational.com

Fertilizer International 494 | January-February 2020

Novaphos IHP technology can make a major impact on phosphate sustainability by opening up new sources of phosphate rock while significantly reducing wastes."

Novaphos produces high-quality acid

Florida-based Novaphos Inc (formerly JDCPhosphate) has successfully manufactured high-quality super-phosphoric acid (SPA) continuously using its proprietary improved hard process (IHP)

This was finally achieved in 2018 during prolonged operation of the company's IHP demonstration plant in Fort Meade, Florida,

Highly-innovative kiln-based IHP produces phosphoric acid from a low-quality phosphate rock feedstock, without creating phosphogypsum waste. Instead, the process generates J-Rox, a commerciallyuseful aggregate, as co-product.

During recent operations, Novaphos was able to continuously manufacture super-phosphoric acid using locallysourced phosphate mine waste. This contained around 14 percent P205 alongside high levels of silica and other impurities such as magnesium oxide. This was combined with clay and petroleum coke to form the feed for the kiln.

A high-grade SPA end-product was obtained (68 percent P205) with minimal impurity levels (<2.5 percent). The process eliminated up to 90 percent of cadmium in the phosphate feed. This was captured in the plant's pollution control scrubbing system, leaving levels of around two ppm in the SPA. The process also significantly reduced levels of lead and arsenic.

"This is a major milestone for Novaphos and our technology, showcasing IHP's value as a cost-efficient and scalable new process," said Timothy Cotton, Novanhos' CEO

He added: "Given the limited phosphate rock reserves in the world, it will be critical for future generations that we waste as little as possible of these vital resources. At the same time, we need to minimise the production of toxic phosphogypsum wastes and reduce the level of harmful impurities in phosphate products."

Luc Maene, former director general of the International Fertilizer Association of phosphate rock while significantly reduc-

commercially deploy IHP technology, after

completing process design engineering for a full-scale production process. The company says it has started a dialogue

with major phosphate producers and engineering companies to fully commercialise Novaphos technology. "Our new name [Novaphos] signi-

fies our readiness to move into the next phase," said Timothy Cotton. "We will work with industry partners to commercialise our technology for making phosphate products that are vital to global food production."

and CO_o-free • But only one percent of hydrogen is produced from water electrolysis currently, the rest coming from steam methane reforming and gasification • Green hydrogen has the potential to decarbonise a large range of applications It offers massive CO₂ reduction potential for power, gas, transport and industry.

GREEN AMMONIA: KEY FACTS

increases exponentially.

Advantages over hydrogen:

Green ammonia as a fuel

Well-established trade

High hydrogen density

World hydrogen market

is not CO_o-free

combustion

Main weaknesses:

 NOx emissions Odour and toxicity.

Low opex and losses in storage

Main advantages:

Zero carbon fuel

Green ammonia vs green hydrogen

Wind, solar and other forms or renewable energy can be exported as electricity

or converted into 'green' ammonia or hydrogen. Green ammonia could lead to a

future where farmers use fertilizers manufactured by sunlight, ammonia produc-

ers become leaders in the new energy market, and ammonia capacity worldwide

Ammonia has better power density than hydrogen and does not have to be kept

Ammonia is regarded as one of the more attractive options for zero emission

Ammonia as an energy carrier could command a high price relative to hydrogen fuel.

Low risk of fire – a specific ratio of NH₂ and air (15-25%) is required to sustain

Today, most of the approximately 55 million tonnes of hydrogen produced annually

 Ammonia production accounts for >50 percent of the total hydrogen market which is currently >95 percent fossil fuel based (from gas, oil, coal etc.)

Green hydrogen produced from renewable power via electrolysis is fully renewable

at extremely low temperatures or under high pressure to be stored

A premium price could be demanded for green ammonia products

shipping due to its energy density and ease of handling

Can be 100 percent produced from electrical energy

· Can be easily converted into hydrogen and nitrogen

• High energy density - can be stored at <20 bar

ing wastes."

(IFA), commented, "For many years I have been hoping that innovative technologies will improve the sustainability of the phosphate sector, which is so critical for food production and so dependent on a limited natural resource. Novaphos IHP technology can make a major impact on phosphate sustainability by opening up new sources

As a next step, Novaphos plans to

www.fertilizerinternational.com

Recycled nutrients for NPK production

Two EU projects are developing and bringing to market a new generation of fertilizers derived from bio-wastes, as Fertiberia's **Maria Cinta Cazador Ruiz** explains.

io-waste streams are a potentially valuable resource – one that is under-utilised at present.

10

13

15

19

21

22

23

28

32

Turning currently discarded bio-wastes into products with value – so called valorisation – has obvious attractions. It meets EU waste management policy objectives, for example. And, by eliminating waste and maintaining materials in economic circulation, this approach is also in keeping with circular economy principles.

Mineral fertilizers feed the world and play a vitally important role in supplying nutrients to crops globally. But their production relies heavily on finite resources. The European fertilizer industry is particularly dependent on imports of primary raw materials. This exposes EU fertilizer producers to security of supply risks and price volatility.

Equally, there is a common misconception that all bio-wastes – regardless of their origin and composition – can become effective fertilizers. This is simply untrue. Crucially, bio-wastes must be free of potential harmful compounds if they are to be transformed into effective plant nutrients. To increase crop yields, they must also contain nutrients in plant-available form. Spain's Fertiberia has been at the van-

guard in developing bio-wastes for use in fertilizer production – as an effective alternative to conventional mineral raw materials.

The NewFert project

Society is facing a 'resource crunch' due to a combination of water, food and minerals scarcity and increasing waste generation. These problems will only get worse in future as the global population continues to rise. Waste generation is in fact one of the world's most alarming environmental problems: the EU alone produces more than 2.5 billion tonnes of waste annually. The recent EU-funded NewFert project specifically addresses Europe's enormous waste management challenge. Its purpose was to develop nutrient recovery processes capable of transforming bio-wastes into high-quality and valuable fertilizer products.

NewFert's full project title is 'Nutrient Recovery from Bio-based Waste for Fertiliser Production'. The overall aim was to develop new value chains from solid and liquid waste residues. More specifically, the project attempted to manufacture a new generation of fertilizers using ashes from waste incineration and livestock effluents, among others.

NewFert's main focus was developing new bio-refining technologies capable of increasing nutrient recovery from waste – and creating a technically feasible and cost-effective industrial nutrient

of and costeneous Mitigatina nutrient recycling scheme. Mitigating the environmental and socio-economic impact of conventional fertilizer production – by replacing non-renewable/fossil-derived raw materials with bio-based nutrient sources – was an equally important project objective.

The NewFert consortium was led by Fertiberia and comprised of five other partners, each possessing different but complementary areas of expertise: • University of Leon (Spain)

- Drage & Mate International (Spain)
- Proman Management (Austria)
 Institut National de Recherche en Sciences et Technologies pour L'environnement (France)
- Kompententzzentrum Wasser Berlin Gemeinnutzige (Germany).

These organisations cover the whole value chain of nutrient recovery, including bio-based industries, SMEs, research & technology companies and academia. The project's delivery plan was divided into eight different work packages.

From bio-waste to promising nutrients

An EU bio-waste screening and mapping exercise was initially carried out as part of the project.

tt Fertiberia developed a specific tool for i- assessing the potential suitability of biowastes for processing into fertilizing prodducts. This was based on a list of bio-waste requirement criteria. A number of parameters (physico-chemical characteristics, supply, logistics, safety aspects, etc.) were k determined for each bio-waste selected. Around 30 percent of the 50 bio-based

materials identified were found to comply with the required criteria.

Piloting nutrient recovery processes

Three novel nutrient recovery processes were developed and validated at pilot plant scale as part of the project:

- Phosphorus recovery from ashes. This process extracted phosphorus present in ashes sourced from agro-food industry and waste water treatment plants and converted this into plant-available
- form (Figure 1). The ashes were firstly chemically treated by acid leaching and then neutralised. Phosphate salts were finally produced using a thermally-efficient reactor.
- Phosphorus and nitrogen recovery from pig slurry. Nitrogen and phosphorus present in pig farm slurry were extracted and crystallised as struvite using biological acidification.
- 3. Nitrogen recovery and organic matter removal from pig slurry. In this synergistic process, nitrogen from pig slurry was recovered via bio-electrochemical systems (BES), while, simultaneously, microorganisms were used to reduce the organic matter content of the biowaste stream (Figure 2).

Solutions for Phosphoric Acid, P and K Fertilizers production and related businesses

- Long track record of worldwide successful experiences in the design, supply, start-up of Phosphoric Acid, Potassium Sulphate and Phosphate Fertilizers production plants
- Knowledge for the supply of a wide range of solutions for Phosphoric Acid production, both Merchant Grade (including Di-Hydrate, Central Prayon Process and combined solutions) and Purified (based on solvent extraction)
- Permanent Licensee of Prayon Technologies for Merchant Grade Phosphoric Acid production
- In house know how for the design and supply of Potassium Sulfate production units based on Mannheim Furnace
 process route developed in cooperation with Marchi Industriale (a European fertilizer producer) that allows to
 achieve low emissions and high quality products minimizing operating costs and increasing the stream factor through
 extended life time of key component
- In house technology for the design and supply of Single Super Phosphate and Triple Super Phosphate (powder and granular) production plants
- Cooperation with key European technology oriented companies such as Incro and GEA for the design and supply of SSP/TSP, NPK, MAP/DAP (granular and crystal water soluble) production units
- Capability of combining Sulphuric Acid, Phosphoric Acid, Fertilizers production units and relevant utilities in an Integrated Fertilizer Complex considering all the possible optimizations in the overall balance of steam, electric power and utilities streams
- Tail gas cleaning systems including DuPont-MECS dynawave, scrubbers and others
- Flexibility in defining the most appropriate project execution scheme to meet Client requirements
- Skills in relation to both new units and revamping or upgrading of existing plants or some of their sections
- Compliance to the most stringent environmental requirements (BAT, emissions, energy efficiency and others)
- Worldwide after sales technical support

Science behind Technology www.desmetballestra.com

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference, Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

Southbank House, Black Prince Road London SE1 75J, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com Fig. 1: The DMPhos phosphorus recovery process

2

10

12

13

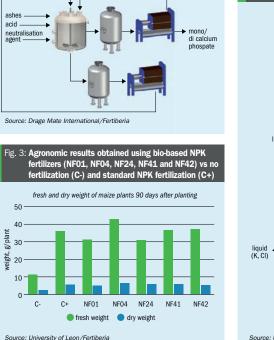
21

22

23

24

25


28

32

33

GLOBAL STEWARDSHIP

A new family of bio-based NPK fertilizers

The project included technological validation at pilot plant scale. This successfully incorporated the most promising bio-based materials into a fertilizer production value chain. The following results were achieved:

- Development of a new family of NPK fertilizers
- 15 percent of the nutrient content of these NPK products was derived from bio-based materials
- 100 percent of their nutrient content is plant-available More than 80 percent of their nutrient
- content is water-soluble • At least 10 percent of the combined
- nitrogen (N) and phosphorus (P205) content is from bio-based materials.

The agronomic performance of all of the bio-based NPK fertilizer formulations was validated using greenhouse trials to deter-

www.fertilizerinternational.com

Source: University of Leon/Fertiberia mine crop yields. In most cases, the crop response was found to be identical to that obtained with the conventional NPK equivalent (Figure 3). These results generally demonstrated the agronomic suitability of NPK fertilizers that partially incorporate bio-based nutrients.

Next steps: the *B*-Ferst project

Building on the positive results of the NewFert project, a new project B-Ferst was launched in May 2019. (Its full project title is 'Bio-based fertilising products as the best practice for agriculture management sustainability'.)

The new project's main aim is to validate and implement NewFert's bio-refining technologies at demonstration scale. Eight new bio-based fertilizers will be produced at this industrial scale. These will incorporate recovered nutrients from bio-wastes. specialised organic matter, biostimulants and coating agents.

B-Ferst will demonstrate how the production of these products can be integrated

into both farm and fertilizer industry value chains. New logistics models and satellite technologies will be demonstrated by conducting three agronomic field trial campaigns at five separate European sites. The successful implementation of these technologies at industrial scale could sig-

Fig. 2: Nitrogen recovery and organic matter removal by a combined biological acidification and BES process

 CH_4

anaerohic

digestion

digestate (OM)

H₂

liquid (N, P, K)

fertilizer industry

pig slurry + co-substrate (N, P, K, Cl, OM)

biological acidification

separation

+ BES -

crystallisation

struvite (N, P, Mg)

P (buffer)

Mø

liquid (N. P. Cl)

liquid (N, P, K, CI, VFA)

CO.

nificantly reduce the use of non-renewable raw materials by fertilizer producers. That would contribute greatly to the necessary shift by the fertilizer industry to processes based on circular economy principles and 'green' production technology.

Further information

Fertilizer International 494 | January-February 2020

The NewFert project (www.newfert.org) and The B-Ferst project (www.bferst.eu) both received funding from the Biobased Industries Joint Undertaking, part of the EU's Horizon H2020 research and innovation programme (grant agreements nº 668128 and nº 837583, respectively).

Antonio Sancho, Incro's managing director, gives a personal view on the circular economy and shares his experience of manufacturing high-quality liquid fertilizers from food industry wastewater.

This is now

That was then...

nly a decade ago, this article would have been highly theoretical and. lacking a receptive audience, have probably gone largely ignored. No doubt I would have needed to start

with a reminder of basic school biology the essential role phosphorus plays in all living things. The article would also have explained how phosphorus ends up in a wide range of waste generated by farming, food production and industry.

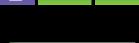
It would also have been necessary to point out some regrettable facts - that millions of tonnes of phosphorous end up

sition:

- should recover nutrients as highly valuable products
- environment, increase the contribution our sector makes to the economy, and empower fertilizer production from local sources

Of course, that would probably have been the exact moment when many readers would have skipped to the next article. The only readers left - possibly one in a hundred - would be those interested in looking at a few laboratory test results!

Fertilizer International 494 | January-February 2020


(almost 13% P205, cadmium-free), at the Fortunately, those days are long gone. same time generating recycled water for Nowadays, the fertilizer industry's pursuit farming and industrial purposes.

of the circular economy has turned from a leftfield idea into a cold, concrete fact. We have been compelled to act due to our sustainability needs as an industry, and by new legislation driving reforms in this direction. Crucially, the EU finally published its new fertilising products regulation in 2019. This introduces legislation covering fertilizers derived from secondary raw materials for the first time. If you can ignore its jargon and somewhat patronising language, this highly positive regulation opens the gate to producing and placing on the market a whole new generation of safe and effective fertilizers. Subsequently, the Joint Research Centre (JRC) of the European Commission, an independent science and knowledge service located in Seville, published a proposed legal framework for these new types of waste-derived fertilizer products. This covers precipitated phosphate salts and

pyrolysis and gasification. The good news is that I am now confident that you - today's reader - will be much more eager to learn about this subject. That's because I bring to you, not just a few lab test results, but an actual industrial case instead.

A leadership role

Spanish industrial group Fertiberia has taken a leadership role in turning the circu-

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

valuable compounds such as tocopherols. squalene and phytosterols. The by-products utilised include oil tank bottoms, degumming sludge and fatty acid waste from vegetable oil refining (soapstocks). At Oleofat's premises, these raw mate rials are treated with sulphuric acid and then, at a later stage, decanted to sepa-

tive fertilizers into a reality. In particular,

its engineering company. Incro. S.A., has

been instrumental in carrying out the flag-

ship Oleofat project. Valuably, this pioneer-

ing project has successfully transformed

industrial wastewater into a liquid fertilizer

The Oleofat company is located in

Tudela food-industrial park, Spain. It val-

orises (obtains value from) vegetable oil

by-products and bio-wastes by transform-

ing these into sustainable biodiesel and

rate fatty acids from wastewater. High added-value products, derived from the subsequent processing of fatty acids, are delivered for animal feeding, cosmetics and the emerging 'nutraceutical' industry.

Wastewater, the Achilles' heel

materials generated by thermal oxidation, This entrepreneurial success story does, however, have one Achilles' heel: difficult to dispose of wastewater Oleofat's wastewater is strongly polluted with a low pH, high organic matter

content (not biologically treatable) and a large amount of salts, mainly sulphates (Table 1) Oleofat's wastewater, because of its

phosphate load, used to be sent to a local biogas plant. But after plant corrosion became a problem it was temporarily sent

FERTILIZER INTERNATIONAL

JANUARY-FEBRUARY 2020

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577

Web: www.bcinsight.com www.bcinsightsearch.com

in landfill each year or, even worse, polluting our rivers and ecosystems. Exactly the type of green language that makes many uncomfortable. Finally, I would turn to my central propo-

- That, in future, the fertilizer industry
- And, by doing so, would improve our

13

21

22

23

25

27

28

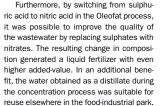
29

30

32

33

Table 1: Wastewater composition following nitric or sulphuric acid treatment*


	Wastewater		
	H ₂ SO ₄ base	HNO ₃ base	
pH	1.70/5.98*	2.28/6.40*	
Conductivity (µS/cm)	59,260	78,240	
DQO (ppm)	57,290	90,630	
Sulphate (ppm)	43,200	<20	
Phosphate (ppm)	14,080	24,640	
Nitrate (ppm)	-	45,200	
*Corrected pH prior to concentration		Source: Inc	

for disposal to the local sewage treatment plant instead.

The lack of a long-term wastewater solution threatened Oleofat's viability as a company. Because of this. Incro was asked to intervene and come up with a suitable wastewater treatment option. Early on we identified a definite opportunity to implement a circular economy approach involving the fertilizer industry.

Incro proposed concentrating wastewater to enrich its P205 content. The liquid concentrate obtained would then be delivered to Fertiberia's liquid fertilizer plant at Agralia where it would be valorised (transformed into a valuable product).

Fig. 1: Incro's MVC wastewater treatment unit

From wastewater to liquid fertilizer

Incro employed its proprietary mechanical vapour compression (MVC) technology to obtain a concentrate and distillate from

the wastewater (Figure 1). This unit incorporates a highly efficient and low operating cost evaporator that concentrates the wastewater close to its precipitation point. Its dual-use design allows treatment with either sulphuric or nitric acid, depending on acid market prices and/or the end-destination of the concentrate.

The concentrate obtained is suitable for use as a liquid NPK fertilizer, containing 4.0 percent nitrogen (as nitrate), 12.9 percent phosphorus (P205), 0.7 percent potassium (K₂O) and 17.3 percent organic carbon, while also being free of heavy metals and pathogens (Table 2). Its nitrate content is, of course, derived from the

nitric acid used to extract the phosphate from the bio-waste. Annually, Incro's MVC unit has the capacity to handle around 10.000 tonnes of wastewater and produce 3.000 tonnes of liquid fertilizer from this.

Conclusion

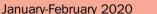

The Incro-Oleofat project shows how secondary raw materials - to use EU jargon - can be transformed into high quality, saleable products. But, above all, it symbolises a real, actual example of phosphate recovery by the fertilizer industry and the circular economy in action.

Table 2: Composition of the liquid fertilizer (process concentrate)

Total nitrogen (N), of w	hich: 4.5 %
 N, organic 	0.4 %
 N, ammonia 	<1.0 %
 N, nitrate 	4.0 %
 N, urea 	<1.0 %
Phosphorus (P ₂ O ₅)	12.9 %
Potassium (K ₂ 0)	0.70 %
Organic carbon	17.3 %
Humic acids	<1.0 %
Chrome (VI)	<2 ppm
Nickel	<4.0 ppn
Copper	<2.5 ppn
Zinc	122 ppm
Cadmium	<0.50 ppn
Chrome	<1.0 ppn
Plumb	0.42 ppn
Mercury	<0.01 ppn
Salmonella	Absent in 25 m
E Coli	<3 NMP/m

phosphates & potash INSIGHT

- 21 Phosphates 2020 welcomes you to Paris
- 22 Europe's phosphate industry
- 24 Phosphoric acid plants for the 2020s
- EcoPhos ChemBe plant for Evergrow in Egypt 27
- **Phosphates project listing 2020** 29
- Seeds of doubt 30

What's in issue 494

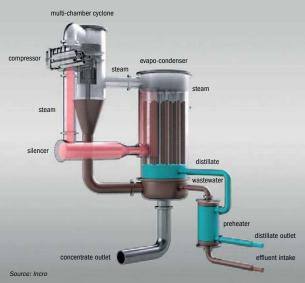
COVER FEATURE 1

Phosphates 2020 **Conference**. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3


Europe's phosphate industry

FERTILIZER INTERNATIONAL **JANUARY-FEBRUARY 2020**

BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577

Web: www.bcinsight.com www.bcinsightsearch.com

www.fertilizerinternational.con

Source: Incro

Our ideas make profitable plants

World class phosphoric acid technology

We offer advanced solutions for:

- fluorine recovery

www.prayon.com/technologies

23

25

26

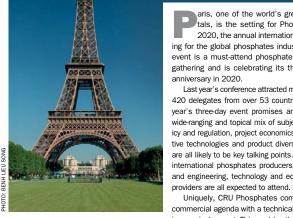
27

28

30

Prayon Technelogies

Our services include:


- effluent surveys

Prayon Technologies s.a. Rue J. Wauters, 144 B-4480 EngisBelgium Tel : + 32 4 273 93 41 Fax: + 32 4 275 09 09 Email : prt@prayon.com

With more than 50 years' experience, **Prayon Technologies** has developed a unique expertise in designing phosphoric acid plants. Our mission is to optimise your plant performance and increase its

profitability.

Phosphates 2020

CRU events will convene the 2020 Phosphates International Conference & Exhibition in Paris at the Marriott Rive Gauche between 8-10 March.

Phosphates market overview

Chris Lawson, CRU's head of fertilizers, sets the scene for Phosphates 2020 with this personal take on the state of the industry:

Phosphate markets end the decade at a new low

"Phosphate fertilizer markets suffered consistent losses throughout 2019, ending the decade with the lowest prices since 2006. A combination of poor demand and new volumes entering the supply chain from Morocco and Saudi Arabia tipped the market into oversupply. With ammonia and sulphur prices also tanking, DAP and MAP prices were unrelenting in the slide downwards, with margins to producers also squeezed.

"Producers in China remain under increasing pressure, Tight environmental regulations remain, although new measures were few and far between in 2019. More pressing was yet another decline in domestic consumption, offsetting production cuts and resulting in another year of strong export sales - adding to global oversupply.

"While China is undoubtedly the marginal producer and exporter, producers in the US took the mantle of swing producer in 2019. Mosaic twice announced production cuts to attempt to balance the market, most recently idling its Faustina facility in Louisiana for three months. This is evidence of the structural supply shift that has occurred over the past decade - in 2010 the US imported 0.5 million tonnes of DAP+MAP and exported almost 6 million tonnes... come 2019 we estimate it imported 3.3 million tonnes and exported 3.2 million.

CONFERENCE PREVIEW PK

information on phosphate raw materials. intermediates and finished products. Programme highlights include:

 Phosphate rock market dynamics aris, one of the world's great capitals, is the setting for Phosphates

2020, the annual international meet- Market developments for complex and speing for the global phosphates industry. The cialty fertilizers

event is a must-attend phosphates sector Feed, industrial and specialty products. gathering and is celebrating its thirteenth The event also offers a separate but equally strong technical and operational programme Last year's conference attracted more than (see page 42). The afternoon of Monday 9th 420 delegates from over 53 countries. This March also has a special theme this year: year's three-day event promises an equally the role of phosphate producers in the cirwide-ranging and topical mix of subjects. Polcular economy. This will cover regulation, icy and regulation, project economics, disrupsustainability and innovation. tive technologies and product diversification

are all likely to be key talking points. Leading Get the CRU View on phosphate supply. international phosphates producers, traders demand and prices across the globe in

and engineering, technology and equipment Hear from incumbent producers and new project developers

- Gain an understanding of the new EU commercial agenda with a technical agenda
- in one single event. This enables the conference to cover the entire value chain of the
 - materials and equipment innovations in the technical showcase

Phosphates 2020 features a typically feed, industrial and specialty markets strong commercial programme. This will · Let expert exhibitors answer your technical

offer up key insights and in-depth market questions.

> year closed out Mosaic, OCP, PhosAgro and the Chinese consortium of producers all announced short-term cut backs in production. This has helped to place a floor on prices in some markets and spur a recovery in others, meaning the market has begun 2020 on a more positive note

> "Poor North American demand in 2019 was a weather-related blip, rather than a structural consumption shift, and is expected to recover sharply in 2020. Meanwhile, the outlook for consumption for other countries (excluding China) remains strong for 2020 and beyond. This, combined with a slowdown in new supply over the medium-term, will be more supportive of prices. A gradual recovery is anticipated in 2020, before more substantial increases beyond 2021.

> "Despite the currently depressed state of the market, investment interest remains active. New capacity developments for Russia, Morocco, Saudi Arabia, Egypt and even Togo were announced through 2019. Investments in these low-cost regions will continue to shift the structure of the industry. But developments in China will remain the most important factor to determining prices - and future investment and strategic decisions - over the coming five years.

"Outside of market fundamentals, the concept of environmental and social governance, new project economics, potentially disruptive technologies and product diversification are the key industry talking points. All of these will be discussed in detail at the upcoming CRU Phosphates conference."

Global and regional market outlooks

Mining projects update

Some key reasons to attend:

2020 and beyond

- Uniquely, CRU Phosphates combines a
 - Fertilising Products Regulation (FRP)
 - Learn about new technologies, processes,

• Understand the key drivers shaping the

"Producer margins tightened throughout 2019, and as the

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020

Conference. Paris

COVER FEATURE 2

production goes

COVER FEATURE 3

phosphate industry

Fertilizer

Europe's

green

BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

phosphate industry - including the fertilizer,

feed and industrial segments - from both an

operational and market perspective.

20

28

Technical programme highlights

A selection of abstracts from Phosphates 2020's technical and operational programme.

How much metallurgical testing is enough?

Metallurgical testing requires an understanding of geology, particularly the variability of the ore in the ground. Bulk samples from large diameter cores can be used for test purposes. But a trial mining pit is typically required for the larger samples (i.e. 50 to 100 tonnes) needed for pilot plant testing.

Worley asks how much metallurgical testing is necessary to guarantee the success of a phosphate rock project. Essentially, the test programme needs to assess if beneficiation is capable of producing a saleable concentrate or product for use downstream. This firstly requires an appraisal of ore mineralogy and characteristics, especially mechanical properties such as grindability, abrasion, density etc. Results obtained are used to formulate a suitable approach for upgrading run-of-mine ore and delivering a commercially-acceptable phosphate rock concentrate.

The second stage of metallurgical test work then optimises the process, including reagents, to improve ore grade, recovery and operating costs. Finally, proving the flowsheet requires semi-continuous pilot plant testing.

Beneficiation of rock phosphates using X-Ray sorting machines

TOMRA shares the lessons learnt from two-years of operational experience at the Ma'aden Wa'ad al Shamal Phosphate Corporation (MWSPC). TOMRA's sorting machines are installed at MWSPC's 13.5 million t/a capacity beneficiation plant where they pre-process run-of-mine (ROM) ore using XRT (X-Ray Transmission) technology.

TOMRA's machines can treat 1,800-2,000 t/h of feed material, about 50-60 percent of the total ROM. The machines, which recognise and separate materials based on differences in atomic density, reduce silicon content by removing unwanted chert from phosphate (apatite).

Importantly, XRT technology achieves a high apatite recovery during the sorting process. Eliminating chert also realises substantial cost savings for MWSPC by reducing downstream equipment wear and associated maintenance costs.

Gemini anionics - a new surfactant family for phosphate flotation

Results are presented for a novel family of anionic Gemini surfactants from **Nouryon**. These environmentally-friendly dimeric compounds have been developed and evaluated as collectors in the direct flotation of apatite from carbonate-rich and siliceous phosphate ores. Using these novel dimeric collectors, it was found that a significant reduction in dosage (half or more) is achievable, in comparison to currently-used monomeric collectors. Gemini surfactants are not only more dose-efficient, they also show outstanding selectivity for apatite in phosphate/carbonate/silicate systems.

Purified phosphoric acid from low-grade phosphate rock

Tenova Advanced Technologies (TAT) have developed a process for producing food-grade purified phosphoric acid (PPA) from low-grade phosphate rock. The process involves leaching highly impure (up to 2.5% Fe₂O₃ and F <4.5%) and low-grade (25-30% P₂O₅) phosphate rock and recovering P₂O₅ by solvent extraction (SX). This delivers food-grade PPA as final product (>61% P₂O₅, <5 ppm Fe, <10 ppm F and <1 ppm heavy metals). Overall recovery is 87 percent minimum.

Optimising industrial processes with a digital platform

Prayon shares its experience of developing a digital platform specifically for phosphates production. This automates the collection of industrial data from a phosphate manufacturing plant. Using machine learning and artificial intelligence, the platform can then help operators control their plants properly by predicting and explaining operational deviations. In future, by working out generic solutions and creating specific tools, digital platforms have the potential to keep phosphate plants within their 'excellence zone' and operating at peak performance.

What is eco-friendly and sustainable?

In fertilizer production, it is important to understand exactly what being sustainable or eco-friendly entails. In this presentation, **ArrMaz** takes a deep dive into sustainable chemistry – what it is, how it can be applied, and what it means for the fertilizer industry. Case study results are presented for eco-friendly ArrMaz coatings. These renewable and biodegradable coatings generate zero or minimal waste during production. They are suitable for phosphates and other industry substrates such as nitrogen- and potash-based fertilizers.

PHOSFLOW® technology for the mitigation of scale growth

Mineral scale accumulates on heat exchangers and in pipelines when dissolved elements become supersaturated at different points in the phosphoric acid production process. The use of chemical inhibitors can reduce the rate of mineral scale accumulation – and are an effective way of avoiding the production inefficiencies scaling can cause. The use of **Solvay's** *PHOSFLOW®* technology has been successfully demonstrated at the Grupo Fertinal-Agroindustrias plant in Mexico. In this case study, *PHOSFLOW®* 1400 was used in the plant's heat exchangers for scale inhibition. Trial results show the benefits for the operational lifetime and efficiency of the evaporator.

IMACID expansion project increases phosphoric acid production

Andritz Separation supplied IMACID with a new tilting pan filter as part of an expansion project. IMACID was looking for a new filter that could produce up to 950 tons/day P_2O_5 , offered maximum reliability, and used a minimal amount of water for filter cloth washing.

Andritz supplied IMACID with its model 36-250 tilting pan filter designed for arid climates. The company has already supplied six of these models to the Umm Wu'al phosphoric acid plants in Saudi Arabia. The new tilting pan filter was able to take full advantage of the excess sulphuric acid available and, consequently, was able to produce 22 percent more P_2O_5 capacity (1,650 tons/day P_2O_5) than the plant's rated capacity of 1,350 tons/day P_2O_5 .

Solving foaming problems in phosphoric acid production

Managing the formation of foam is a common challenge in the phosphate production process. It can decrease production output and be a safety concern. Although foaming is a notable reactor problem, it can also occur in other parts of the process. Its downstream effects can also be widespread, with consequences for beneficiation, evaporation and granulation. In this presentation, **Nalco Water** will discuss its recent experience of solving foam problems in the phosphate production process. An effective approach that combines advanced chemistries with advanced application technologies is described. PHOSPHATE INDUSTRY REPORT **PK**

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference, Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

Leading EU phosphate and NPK fertilizer producers are profiled, including EuroChem, Fertiberia, Grupa Azoty, ICL, Prayon and Yara.

Europe's

phosphate industry

Yara's production might

ara International is Europe's leading phosphate rock and NPK producer. The company's Siilinjärvi mine in Finland – the EU's only phosphate mine – produces around one million tonnes of phosphate rock concentrate and 300,000

tonnes of phosphoric acid annually. Yara's combined European operations provide 5.2 million tonnes of NPK production capacity (Table 1), more than 80 percent of the company's total global NPK capacity of 6.2 million tonnes. This is divided between six sites in four European countries: Siilinjärvi and Uusikaupunki in Finland, Glomfjord and Porsgrunn in Norway, Montoir in France and Ravenna in Italv.

Yara is a market-leading producer of NPKs, selling 5.9 million tonnes globally in 2018. That volume placed Yara well ahead of competing NPK producers such as Coromandel, Gresik, Iffco and PhosAgro. The NPK market is a lucrative one for Yara. The company's compound NPK products, marketed under the YaraMila brand name, sell at a price premium of around \$86/t relative to commodity blends. This total does, however, also include premiums generated by the company's calcium nitrate, fertigation and micronutrient product ranges.

Table 1: Yara's European NPK production sites*

Siilinjärvi, Uusikaupunki,

500

1 200

200

Finland Finland

200

300

1.000

500

*last updated March 2018

Product

Ammonia

Nitric acid

Phos acid

Phos rock

NPKs

CN

Nitrates

Premium products able to deliver high margins – including compound NPKs and micronutrient (*YaraVita*) products – feature strongly in Yara's fertilizer portfolio, being responsible for around two-fifths of global sales volumes in 2018. These value-added products generated a total premium in excess of one billion dollars – versus the commodity fertilizer alternatives – according to Yara calculations.

Increasing the capacity to produce and sell premium products is an integral part of Yara's future growth strategy. This has been partly delivered by expanding European NPK output. An NPK expansion at the Uusikaupunki site in Finland came on-stream in the third quarter of 2016. Further NPK capacity additions in Norway

har- – by 70,000 tonnes at Porsgrunn and sell 50,000 tonnes at Glomfjord – were also ela- completed during 2018.

Porsgrunn, Glomfjord, Montoir, Ravenna

France Italy

400

400

400

Source: Yara

300

300

400

Norway

400

600

200

Norway

500

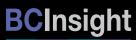
1.500

2 200

900

Production capacity ('000 tonnes)

EuroChem: a focus on quality


EuroChem Group operates three phosphate plants with the combined capacity to produce around 4.3 million tonnes of NPK products, phosphate fertilizers and feed phosphates. The Group owns three NPK/ bbal phosphate operations within or adjacent to de the EU market,

Phosphorit is a leading Russian producer of phosphate fertilizers and feed phosphates. It is located close to the Baltic coast at Kingisepp, northwest Russia, adjacent to the new FuroChem Northwest ammonia plant

 Located in Belgium with port access,
 the large-scale EuroChem Antwerpen production complex consists of a number of production units for nitric acid, NPK, AN/ CAN and nitrophosphoric acid.
 EuroChem subsidiary Lifosa is one of the EU's leading phosphate fertilizer pro-

www.fertilizerinternational.com

Southbank House, Black Prince Road London SE1 75J, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

13

17

15

18

19

20

21

22

23

24

25

26

28

29

30

32

33

tional 485, p43). The industry had been

in steady retreat for several decades due

to the combination of large-scale, low-cost

global competition and the region's reli-

sures in Europe has continued with Fertibe-

ria notably ending DAP and MAP production

priced supply of phosphate rock also

remains a challenge for non-integrated

European producers, Grupa Azoty has,

however, been able to address this by

entering into long-term supply agreements

gent cadmium limits, as part of the new

EU fertilizer regulation, has the potential

to disrupt phosphate rock imports into

Europe and increase costs, with lower cad-

mium Russian rock most likely to gain at

the expense of higher cadmium rock from

North and West Africa. The initial introduc-

tion of a higher cadmium limit (60 mg/kg

P205) could be achieved without major dis-

ruptions to phosphate rock supply, accord-

ing to the European Commission, although

are increasingly focussed on higher-value

segments such as compound NPKs, water-

soluble fertilizers and feed phosphates

The shift to NPK production has been a

particular popular and successful strategy

for European phosphate producers, with

EuroChem being the latest company con-

sidering a move away from DAP to NPK

production seen in Europe is part of much

wider global trend, as margins for the for-

mer weaken and demand for the latter

grows. Changing their product mix in this

way has provided Europe with a strong

position in the growing and higher-margin

NPK market, Indeed, EU phosphate pro-

ducers currently account for roughly half of

global NPK exports, most of this coming

The European NPK fertilizer operations of Rosier are not covered by this article.

These include Rosier's two NPK plants at

Moustier in Belgium and Sas Van Gent in

the Netherlands. Fertilizer International

hopes to profile these in a future edition

www.fertilizerinternational.com

from Belgium, Norway and Finland.

The switchover from DAP/MAP to NPK

production

Author's note

of the magazine.

Europe's major phosphate producers

this is disputed by some suppliers.

Looking ahead, the introduction of strin-

The need to secure a competitively

The trend for consolidation and clo-

ance on imported phosphate rock.

at its Huelva plant five years ago.

with OCP and Ameropa

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL

JANUARY-FEBRUARY 2020

BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

ducers. Located in Kedainiai. Lithuania. the company, which dates from 1959. manufactures:

- Technical-grade sulphuric acid
- Diammonium phosphate (DAP)
- Phosphoric acid Water-soluble monoammonium phos-
- phate (MAP) crystals • The feed phosphate MCP (monocalcium
- phosphate).
- Aluminium fluoride (AIF₂).

EuroChem has channelled more than \$210 million of investment into Lifosa over the last 10 years. Much of this capital expenditure has been targeted at establishing water-soluble phosphate production capabilities. A new, highly-efficient, \$16 million water-soluble fertilizer unit opened in October 2018. The new 25,000 t/a capacity plant produces water-soluble urea phosphate. Its completion followed the commissioning of a 30,000 t/a capacity water-soluble monoammonium phosphate (MAP) production unit at Lifosa in 2017.

Lifosa produced 805,000 tonnes of DAP and 165,000 tonnes of feed phosphates in 2017 and is recognised for its high-quality products. The company is well-placed for the export market, having access to the icefree port of Klaipeda on Lithuania's Baltic coast, some 210 kilometres away from its Kedainiai operations

EuroChem Group acquired Lifosa in 2002. The purchase helped secure Lifosa's longterm future and competitiveness by providing access to a supply of high-purity, low-cost igneous phosphate (apatite) rock from Euro-Chem's Kovdorskiy mine at Kovdor in Russia's Kola peninsular. In 2015. EuroChem announced plans to invest \$104 million in expanding Koydorskiy's production capacity by 948,000 t/a, raising total rock concentrate capacity to 3.4 million t/a by 2018.

Lifosa has been producing feed phosphates for nearly two decades. The company's original dicalcium phosphate (DCP) plant dates from 2001. This was followed by a monocalcium phosphate (MCP) unit in 2002 and a mono dicalcium phosphate (MDCP) unit in 2004.

Pravon: water soluble phosphates

Belgium's Prayon Group's is an acknowledged leader in wet-process phosphoric acid production globally. The company was founded in 1982, although its roots in Belgium's Liège region stretch back more than 100 years. Currently, some 50 per-

cent of phosphoric acid production sites globally use Pravon technology while 70 percent use Prayon equipment.

panies located in more than 10 countries, employing 1,450 people and generating a turnover of €500 million. The company is jointly owned by OCP Group and Société Régionale d'Investissement de Wallonie (SRIW)

Prayon is also a world-leading producer of high-purity phosphate chemicals for the fertilizer, detergent, food additives and technical markets. The company's production arm manufactures purified phosphoric acid (PPA) using a proprietary solvent extraction process. This acid is available in different grades and concentrations for use in the production of a wide range of technical- and food-grade products.

Puurs, Belgium, have the capacity to produce 250,000 tonnes of P₂O₅ per year. Emaphos, a joint venture between Prayon, OCP and Chemische Fabrik Budenheim (CFB) located at Jorf-Lasfar, Morocco, provides a further 150.000 tonnes of P₂O₅ capacity.

tonnes of phosphate salts each year from Engis and Puurs in Belgium, Les Roches de Condrieu in Lvon, France, and Augusta. Georgia in the US. Production output includes sodium, potassium, calcium, ammonium and aluminium phosphates. Many of these products are marketed under the Europhos brand name and targeted at food and technical/industrial markets. Pravon has also been manufacturing horticultural phosphates in Europe for over 40 years, and markets a comprehensive range of water-soluble fertilizers. These were consolidated under the single Hortiprav[®] brand in 2011. The Hortipray[®] range of fertilizer products is designed for application to fruits, vegetables, flowers and

plants by fertigation, and are recognised for

their purity and high solubility. They include:

Monoammonium phosphate (MAP)

Monopotassium phosphate (MKP)

micronutri Fe

ICL Fertilizers

Phonster

MAP & MKP anticalc

Potassium nitrate (NOP).

high-performance plant nutrition products. including: potash. Polvsulphate, phosphate The Group brings together over 20 com-

Pravon's production sites in Engis and

Prayon manufactures over 300,000

fertilizers, phosphoric acid, specialty fertilizers, phosphate rock and tailor-made compound fertilizers. ICL operates two European NPK pro-

duction plants located in Amsterdam in the Netherlands and Ludwigshafen in Germany. Combined, both sites provide the company with 850,000 t/a of NPK production capacity within the EU market.

ICL's Amsterdam site has a total nameplate capacity of 550,000 tonnes for NPK production, divided between 450,000 tonnes of granular and 100,000 tonnes of powder products. The Ludwigshafen plant, although smaller, still has an impressive nameplate capacity of 300,000 tonnes.

ICL is able to produce over 80 different grades of NPK fertilizers from its Amsterdam and Ludwigshafen facilities. ICL also has two mines in Europe: potash is mined at Súria in Spain, while the Boulby mine in the UK is the world's first and only polyhalite mine. ICL markets polyhalite, a soluble fer-

tilizer containing sulphur, potassium, magnesium and calcium, through its Polysulphate® portfolio of products. These includes PKpluS®, a range of polyhalitecontaining, granular PK precision fertilizers. These balanced formulations contain phosphorus and potassium, without nitrogen (N), supplemented by a wide range of secondary nutrients, including sulphur, magnesium and calcium.

Grupa Azoty targets Poland and Germany

Grupa Azoty Police, a subsidiary of Grupa Azoty, is Poland's largest manufacturer of phosphoric acid, phosphates and NPK fertilizers, making it a significant European producer. The company is based in Police in the country's southern Lesser Poland province. Its main commercial products include: MAP. DAP and NPK fertilizers, incor-

- porating secondary nutrients (sulphur, magnesium) and micronutrients A granulated NS fertilizer comprised of
- ammonium sulphate, urea and magnesite
 - Urea Liquid ammonia
- White titanium dioxide-based dyes.

Grupa Azoty Police's fertilizer unit is the largest within the company, both in terms of production volumes and revenues. Its NPK and DAP products - POLIFOSKA® and POLIDAP® - are market-leading brands in

Fertilizer International 494 | January-February 2020

Poland. Its fertilizer products are also 282.000 tonnes of nitrogen solutions sold in Europe. South America and Africa 125 000 tonnes of NPKs The unit produced just over one million The company manufactures NPK fertilizers at the Huelva plant in Spain. Huelva originally had the capacity to produce: • 290,000 t/a of complex NPK fertilizers • 290.000 t/a of diammonium Phos-

phate (DAP)

phate (MAP)

in 2018.

volume '

• 150,000 t/a of monoammonium Phos-

site three years previously. The company

kets. It reported a large annual rise in the

cost of this raw material (above 20 percent)

in recent years were part of a restructuring

plan by Fertiberia to make the site a cen-

However, 2018 was a difficult year for

the Huelva plant, according to the com-

pany: "Production of compound fertilisers

fell by 17 percent compared to the previous

financial year, affected by operational prob-

lems and by a lower than forecast sales

declined by around one-third in the last

three to four years, having previously been

above the 188,000 tonne production level

In addition to producing NPKs at Huelva

Fertiberia has been diversifying and

expanding its product portfolio. The com-

pany launched a new line of NPK fertilizers

in 2016 as part of the Fertiberia Advance

product line. The company also introduced

a new NPK product SulfActive in 2018,

part of its CLASSIC range. This new low-

chloride NPK formulation contains six basic

nutrients and is "optimised to activate the

absorption of nutrients by plants" accord-

The European phosphates industry has

undergone further consolidation and mar-

ket shifts over the last decade (Fertilizer

International 443, p45: Fertilizer Interna-

Adapt to survive and thrive

ing to Fertiberia.

Fertiberia's NPK output has in fact

tral hub for NPK production.

The production changes seen at Huelva

Grupa Azoty Police expected to complete a \$18.5 million (PLN 67 million) upgrade project at its phosphoric acid unit by June last year. This involves replacing the existing DA-HF production process with new technology licensed by Pravon. This change should enhance production efficiency and improve output quality.

phosphate rock under contract or on the spot market. These purchases are largely African-sourced and mainly from Arabic countries in the north of the continent. In February last year, the company entered into a two-year contract with Ameropa and Senegalese-based supplier Somiva to supply low-cadmium phosphate rock sourced from Senegal. This contract runs until Feb-

In April 2018, Grupa Azoty signed a threeyear phosphate rock supply agreement with Morocco's OCP in a deal thought to be worth around \$103 million (PLN 350 million). This contract runs until December 2020, OCP previously agreed to supply Grupa Azoty with one million tonnes of phosphate rock in 2017 in a similar but shorter-term \$35

Polish phosphate rock imports have been on the rise in recent years. Trade statistics show the country imported 1.2 million tonnes in 2017, some 56 percent of this supplied by Morocco, Poland imported 674,835 tonnes of Moroccan phosphate rock in 2017, up from 541,279 tonnes in 2016.

Fertiberia has eight million tonnes of production capacity for chemical intermediates and end-products. It operates 16 production centres located in four countries - ten in Spain, two in Algeria, three in Portugal and one in France. The company produced just over three million tonnes of products and raw materials in 2018 a rise of more than two percent on the previous

year. These included 1,062,000 tonnes of nitrates

- 676.000 tonnes of nitric acid
- 531.000 tonnes of ammonia
- 342.000 tonnes of urea

www.fertilizerinternational.com

ICL is one of the world's largest fertilizer producers. The Israeli-headquartered company provides farmers, growers and distributors

on five continents with a wide protfolio of

tonnes of compound fertilizers in 2018, accounting for just under 60 percent of company revenues. This was supplemented by 326.418 tonnes of phosphoric acid production

However, Fertiberia ceased manufacturing DAP and MAP at Huelva in 2013 citing high production costs, having previously ended phosphoric acid production at the Grupa Azoty Police purchases its now sources the phosphoric acid needed for NPK production from international mar-

ruary 2021.

million (PLN 135 million) deal.

in 2014 and 2015. in Spain, Fertiberia's Portugese subsidiary ADP Fertilizantes has the capacity to produce 400.000 t/a of NPKs and 170.000 t/a of superphosphates at its Setúbal plant.

Fertiberia adapts to market needs

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

James Byrd of JESA Technologies (Worley, formerly Jacobs), Florida, looks at upcoming innovations in di-hydrate (DH) phosphoric acid plants for the 2020s.

13

18

23

28

The legacy of previous engineers is an amazing wealth of

information we can learn from."

Above: Jacobs (Worlev) were contractors/ licensor for the Wa'ad Al-Shamal megaproiect in Saudi Arabia.

echnological innovation, by introducing improvements to processes or products. offers new efficient ways of achieving the same or more ambitious production goals. In mature industries, innovations generally serve to bring down the unit cost of products. In a situation where small incremental improvements can cumulatively deliver large returns, it is not surprising that innovations are perpetually under study.

Phosphoric acid plants for the 2020s

The importance of the process

The product being manufactured in a DH phosphoric acid plant is usually merchant grade acid (MGA). This can be the ultimate end-product or, in a verticallyintegrated complex, consumed on-site as an intermediate in the manufacture of phosphate fertilizers. Because MGA allows each process to find a place where is generally produced as a fixed and it is the best fit defined product, it is often the process

Innovations can come in many forms. Equipment improvements have certainly changed how phosphoric acid plants are configured. But other more subtle process

tion at phosphoric acid plants.

improvements can also provide dividends. Optimisation is possible at almost any phos acid facility, for example, even when the process is left largely unchanged. The trick is to build these optimisations into the design phase of a project. This avoids the inefficiencies - in terms of cost

or implementation - that invariably occur with retrofits. That is not downplaying the value of retrofits. It is just a recognition that, in engineering, the money is best spent early on.

This article will focus on innovations in di-hydrate (DH) technology for phosphoric acid production, as this process comprises over 80 percent of the market worldwide. Other production technologies, of course, do have merit. Indeed, matching individual technologies with the different production circumstances found across the world

The article is split into two sections. that becomes the main focus for innova-In Part 1, we look at the current state of the art and previous industry innovations. We then take a look at future innovations and trends that will influence the design of phosphoric acid plants over the next decade in Part 2.

Fertilizer International 494 | January-February 2020

Learning lessons from the past

No look forward is complete without a look back. Interestingly, over the decades, well-respected pioneers in our industry have written articles about future innovations more than once. Previous predictions are valuable as - by revealing how market forces influenced the industry in the past - they can tell us about our own path to the future. After all, the imprint of forces that influenced what our industry looks like today will also partly shape what it will look like tomorrow.

It is important to note that the general approach to improving phosphoric acid plants has been largely the same for many decades. Many significant improvements have been made in the past with undoubtedly more to come in future. In a world where the operating environment is constantly changing, the industry's technology providers must evolve as well. Inevitably, those that stand still will actually lose ground due to the progress of their competitors

Many talented engineers have made important contributions throughout the history of this mature industry. We owe them a debt as the current state of the industry is built on the lessons of the past. Yet technology has progressed to a point where it is sometimes easy to overlook or forget those past lessons.

Often, supposedly new ideas that are raised and dicussed have actually been thoroughly explored some decades earlier. Sometimes, these ideas may have newfound merit due to changes in the economic climate. Furthermore, no single idea is universally applicable as operators in different parts of the world have different concerns. While many phosphoric acid producers globally have superficial similarities, a deeper dive often reveals that their economic drivers are different.

In certain production situations, even driving down the unit cost per tonne may not be the primary driver. Where revenues and demand are both high, for example, production output may be more valued than production efficiency.

PART 1: Current state of the art

Ball mills

Very few DH phosphoric acid plants across the world can operate efficiently without first reducing the size of the ore they consume. Ball mills have been the traditional method for grinding phosphate rock concentrates for many decades. and are still the favoured method today. While dry grinding was preferred initially, wet grinding has become favoured for DH processes. This is due in large part to the power savings and operational reliability of wet grinding. The switchover from dry to wet grinding which began in the 1970s continues today. There are, however, industry circumstances where dry grinding is still warranted

load. A closed-circuit design improves their efficiency, in terms of both power usage

to recognise that the size distribution of the feed, and not just its chemistry, affects process parameters in the phosphoric acid reactor. Because phosphate concentrates make inherently unstable feeds, any improvements in grind consistency will therefore improve control of the phos-

Savvy operators will sluice phosphate rock in the ball mill with process water. Indeed, many plants have been retrofitted in this way from the 1990s onwards. The process water can come from gypsum stack decant water or from cooling pond water. Regardless of the source, sluice water usually contains P₂O₅ that can be recovered to the process. While there are side effects - acidity, gas evolution, and gas entrainment in the slurry - these can be designed around.

that are universally applicable to every operation. heat load and grinding consistency. It is important

become a focus for innovation in the future. The use of nuclear density meters to

monitor the reactor feed has improved solids control. The accuracy of these meters is unrivalled, allowing the automation of solids feedback loops. Future goals could include online chemical analysis of the rock slurry. Knowing the calcium feed to the reactor, the operator can more precisely add sulphuric acid to optimise reactor control.

Furthermore, while many have attempted online analysis for excess sulphates in the reactor slurry, this is not commercially

www.fertilizerinternational.com

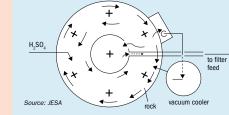


Fig. 1: 1960s Dorrco phosphoric acid reactor design

Many decades ago, the need for output over efficiency was recognised as an economic imperative that could be exploited under certain conditions. The danger comes in losing such institutional knowledge when the tide turns and highly efficient operation once again becomes the main objective. The value in using experienced operators and engineers, therefore, cannot be overestimated. The engineering literature states that phosphoric acid plants typically provide a six percent annual net return on annual production. Yet production losses can easily be higher in real operating conditions - a possibility that should be allowed for in plant design by ensuring the right balance is struck between design simplicity and flexibility. The general point here is that there is a lot of merit in under-

standing how design principles have come to be applied. This is because a continuation of these principles is often the basis for current innovation and plant optimisation. But it also needs to be understood and appreciated that the same design principles are not always applicable in every circumstance. Indeed, from an engineer's perspective, one of the things that makes this industry so interesting is that a bespoke approach is necessary – as there are few solutions

Reactors: feed control, design and

Rock slurry blend systems are used to mitigate variations in feed to the phosphoric acid reactor. This is critical in situations where slurries from different sources are blended together. Due to the water balance, it is desirable to supply the phosphoric acid reactor with a high solids feed. Because of this, rheology modification is one area that may

BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

phoric acid reactor.

Ball mills require a substantial power

FERTILIZER INTERNATIONAL

successful at present. Jacobs did develop a method using conductivity meters many years ago. These meters have been used with moderate success, albeit primarily as trend indicators. Other methods have tried using slip streams, with one operator reporting moderate success, but scaling remains an inherent problem

For reactors, much of our current understanding of internal recirculation properties and the benefits of sulphate control were first established back in the 1970s. At the time. agitation and flow schemes were identified as areas for future improvement in reactor design, as is still the case today. Computational fluid dynamics (CFD) has become accepted as the agitation design tool in modern times. CFD can improve reactor efficiencies and optimise capex and opex.

In the industry's early days, the reactor heat load was controlled by air cooling. Then, in the late 1960s, flash coolers were introduced to control heat loads and increase reactor capacities. Low level flash coolers were subsequently designed and introduced in the early 1980s to improve cooler reliability.

Further improvements in the pumping capacity and direction of the recirculation pumps have been made since then. With increasing pumping capacities, the heat load removal for a given delta T has increased, particularly in the last ten years.

Plant capacity

13

18

20

21

22

23

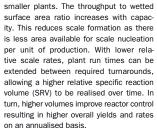
24

25

28

33

Another trend was apparent between 1961 and 1978; phosphoric acid plant capacities were increasing (Figure 2).


One of the primary advantages of DH technology is economies of scale. To some degree, this is due to its relative simplicity and stability of operation. It was only natural that plant capacities would rise to keep pace with increasing equipment capacities. Larger phosphoric acid plants are inherently more forgiving and flexible than

size over time

3.000

2,500

2.000 1,500 1.000 500

Generally, the potential for improving annual production is greater at plants with higher nameplate capacities. Putting a precise figure on this higher annualised production, for project justification purposes, is problematic. Similar to investing in safety, the events that don't occur justify the return on investment.

The trend for larger reactors continued through the 1990s culminating with the design and installation of a 2,650 tonne/day nameplate capacity plant in Paradeep, India, in 2000 (Figure 2). The plant, currently operated by IFFCO, routinely produces 3,000 t/d of phosphoric acid.

The obvious advantage of larger plants is their economies of scale for capex (capital expediture). The positive impact of plant capacity on opex (operational expenditure) is less pronounced. This is because opex is largely driven by raw material consumption and, to a lesser degree, labour and utility

Filter design and operation

costs

One logistical issue encountered with larger reactors has to do with filtration. Managing the return acid and mixing tee(s) is critical. Moderate strength acid is returned from the filter and introduced into the mixing tee alongside high strength sulphuric acid. Relative quantities are adjusted to control the dilution of the acid entering the reactor. The heat

Source: JESA

Technologies (JT) offers a proprietary tee to maximize dissolution and reliability. Fig. 2: JESA Technologies: the trend for larger size reactors Fig. 3: Mixing tee differential flow patterns

Source: JESA

of dilution is significant as it provides

a major source of heat in the reactor.

Dispersing heat homogeneously is para-

been another practice that has evolved as

plant capacity has increased. The primary

goal here is to keep the reactor running.

Every time a reactor shuts down mechani-

cal losses occur during start up, shut down

and the time it takes for the reactor to return

to equilibrium. In addition, oversizing filtra-

tion - i.e. providing more filtration area than

strictly necessary - by a larger margin than

for other plant equipment allows higher rela-

tive production rates during routine washing

of a filter. As a measure, oversizing also

provides a way of mitigating against system

upsets. Taken as a whole, these filter working practices should provide additional prod-

uct tonnes on an annualised basis and help

tral valve, for example, has become more

efficient in preventing entrainment losses

and increasing filtration rates. It can even

accommodate a dual vacuum system to

increase overall control. Duct sizing has been

optimised and vacuum pumps are also more

efficient. Filtrate pumps can now be self-regu-

lating too. This eliminates the need for filtrate

tanks - bringing down the structural costs of

mixing tee placement. CFD has shown that

placement makes a difference in how sul-

phates are dispersed. In an annular reactor,

results showed that the position of the tee.

relative to an agitator, controls whether the

majority of sulphates move forward or back-

ward in the reactor (Figure 3). This discovery

can be exploited to improve process condi-

tions, depending on the phosphate rock

source. Advances in mixing tee design have

also improved operational stability. JESA

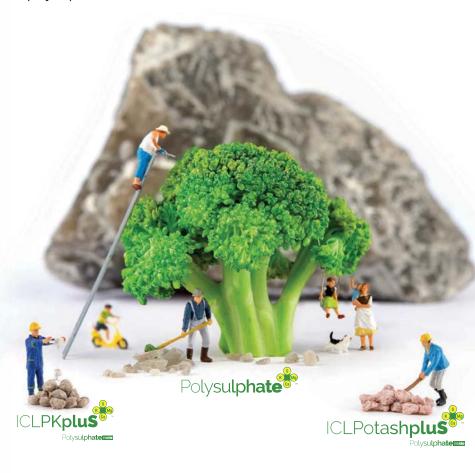
the filter building and its elevation. Another process advance has been in

Filter design has also advanced. The cen-

simplify operations.

The use of multiple filters per reactor has

mount to reactor control.



Our family of fertilizers works for you

ICL Fertilizers develop Polysulphate based products for cost-effective, efficient and reliable plant nutrition around the world.

www.polysulphate.com

AICL Fertilizers

CONTENTS

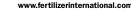
What's in issue 494

COVER FEATURE 1

Phosphates 2020 **Conference**. Paris

COVER FEATURE 2

Fertilizer production goes green


COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL **JANUARY-FEBRUARY 2020**

BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

1950 1960 1970 1980 1990 2000 2010 2020 2030

12

13

15

18

20

22

23

25

26

28

29

30

32

33

PART 2: Future innovations

Plant capacity and scale

Since 2000, no plant has been designed that approaches the nameplate capacity of the 2.650 t/d IFFCO plant in India. Nevertheless, with technological advances in filter capacities, flash cooler capacities and agitation, there is high confidence that even larger phosphoric acid plants can be designed and built. For example, a 3,000 t/d design with today's technology could comprise of three filters and two flash coolers. This is a mark of progress as twenty years ago such a design would require five filters and three flash coolers.

Even a nameplate capacity of 3,000 t/d capacity should not be considered the upper limit for the size of phosphoric acid plants. Multiple filters, in excess of two have been proven to operate successfully. It has also been proven that multiple flash coolers, again more than two, can be installed and operated in a single reactor.

In fact, a design exists in the JT archives for a 5,000 t/d plant. Although this was never built, the technical challenges in designing and building a larger scale plant have been overcome. It is likely there will be a time in the future where a 1.500 t/d plant will no longer be considered world-class. Economics dictate that this point will be reached, although precisely when this will occur is open to question. Given that the primary advantage of the DH process is economics and mass production, largescale plants are an easy prediction, as they allow these advantages to be further exploited.

Gypsum reuse

Gypsum, the by-product of the DH process, has received more attention, particularly as plant sizes have increased. Storage and/or reuse of gypsum has always been an issue because of the large volumes generated during phosphoric acid production. Environmental constraints are also becoming more and more prevalent throughout the world.

Other phosphoric acid technologies produce a slightly purer gypsum than the DH process, and is therefore one of the primary selling points for those technologies. Nevertheless, DH gypsum is being used in certain parts of the world, albeit

on a limited basis. Developments enabling the ubiquitous reuse of gypsum look likely in the future. In fact, the inevitable shift to the gypsum reuse was predicted in a 1991 article by Dave Leyshon (see references).

Water balance

The phosphoric acid plant design is driven by the water balance. Any coherent design needs to take all local water constraints into account. Because water is a primary driver, and water concerns differ as much as the rock itself does, phosphoric acid plant designs also differ significantly between various locales

Off the shelf plant design

Project teams typically want to copy plant designs, taking them off the shelf and then applying them to the next location to save time on the project schedule. While it is true that there is a time saving in quickly getting to the first drop of acid produced, this can be costly subsequently if start-up problems and delays occur in reaching full production potential - in essence there is a failure to realise project economics

The economics of a plant that achieves its full potential late, versus early, is not something anyone wants to present to management. But it is a real issue nevertheless. It is quite impossible, except in retrospect, to quantify the production tonnes lost, the reductions in yields or the lower efficiencies that result from building and operating a plant with a copied, off the shelf design. Savvy operators will, however, take this point into account in future, so ensuring project economics will reach their full potential. In the overall scheme of things, developing a bespoke design early in the project does not require much additional time or cost.

Global losses

It is also useful to incorporate the concept of global losses into the coherent plant design. These can be significant even if many operators do not even track these. One operator, after seeking help, reported global P205 losses of 15-20 percent of everything fed to the plant. This compares to 1-5 percent mechanical losses for a wellrun plant cited in the literature. (Mechanical

losses are equivalent to the global losses less filter losses). Management in a well-run plant will be aware of these losses and will be proactive in minimising them. It is not unusual for losses to exceed 5 percent, and even 10 percent, if mechanical losses are not a focus of operations. Global losses therefore look set to

remain a critical issue, looking ahead, as each operator takes steps to reduce the cost per tonne of product. Certainly, reducing global losses will be a focus of plant design in the future and, being a potential low hanging fruit, will also be the target of efficiency improvements in existing plants.

Acid concentration

Improvements in concentrating acid are closely linked to equipment advances. For example, recirculation pumps have become more reliable with higher capacities while instrumentation and interlocks have also made operation much more reliable and efficient. Concentrator vessel construction has trended larger over the years too, albeit with the same design

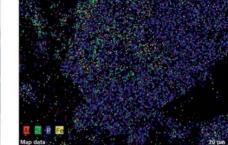
Entrainment separation has played an essential role in concentrator efficiency improvements as well, with several high efficiency designs currently commercially available. With proper design, the separator return can be merged with the product stream, improving throughput by about one percent

Unit capacities have risen over time. although the heat exchanger bundle is a current limitation. Graphite is commonly used in the industry, but metal heat exchangers are becoming more economic. In monolithic heat exchanger designs, there is a limit on the graphite tube length. Metal heat exchangers, in contrast, could possibly break this barrier and be the basis for even larger unit capacities. Metal exchangers are well known by the phosphate industry in some parts of the world, while in others there is concern about corrosion being a life limiting factor.

Fluorosilicic acid (FSA) can be recovered from the process. Several design options are commercially available depending on the reasons for capturing fluorine and its end-use. Environmental designs that recover low-quality FSA, for example, have a much lower capex than designs that deliver product quality FSA.

SEI

JESA Technologies (JT)


JESA recently rebranded its technology arm as JESA Technologies (JT). The renamed company is pursuing a number of specific innovations in response to current industry concerns.

JT has developed a modified flash cooler design. This new integrated flash cooler design is specific to the JESA reactor. The redesign is intended to save capex and minimise the plant footprint. Minor energy savings and improvements in process stability may also be realised. In this concept, the flash cooler sits on top of the reactor's central compartment. Accommodations are also provided for cleaning. The design eliminates the need for an agitator in the central compartment. It does not alter the annulus geometry yet increases the open area of the annulus. A better recirculation ratio is anticipated as CED has shown that the internal recirculation gains momentum in the open area.

Fluorine sequestration remains problematic for virtually every operator worldwide. JT has developed a new relatively low capex technique for neutralising fluorine. It is also an economically and environmentally attractive solution. Details of this process cannot be disclosed at present as the patent has not been filed as yet. Nevertheless, JT hopes to make the process commercially-available in the near future.

JT offers a patented iron removal technique. This can make some deposits commercially viable by removing iron and improving global losses. The associated equipment, because a slip stream is used, is small relative to the rest of the plant. Operators are driving down their cost

per ton of product produced, with process efficiencies being integral to this trend. JT

SEM and corresponding elemental analysis of apatite ore.

offers a high yield mode for DH operations termed DH+. The goal is to provide an incremental improvement in filter losses. DH+ is expected to deliver increases in yields in the range of 1-2.5 percent. However, test work is required in all cases, with results being directly dependent on the source of phosphate ore

JT is pursuing innovations in a number of other areas, including Upgrading coarse rejects for producing

- concentrate Flotation recovery for low-grade phosphate
- Refining flotation techniques
- Iodine recovery from phosphoric acid
- Cadmium removal
- Recovering rare earth minerals
- Chromium removal from phosphoric
- Sulphur recovery from gypsum.

Many more additional areas of investigation have also been identified. JT's research and development activities are therefore expected to produce more results in the future.

Conclusion

The future is predicated on the past and present. Some great engineers and scientists have contributed a lot to this industry in many areas over time. Not recognising their achievements, which form the foundations for our own achievements, would be remiss. Foretelling the future is almost impossible - as can be seen when looking at the present from the past. Nevertheless, the legacy of previous generations of engineers is an amazing wealth of knowledge which we can draw on and learn from.

As we already know what the constraints will be, some forthcoming innova-

tions for the 2020s seem like common sense - including efficiency improvements, cost reductions and advances in technology. These are all changes that have been predicted in the past. But how we execute such changes is likely to be what is different moving forward.

Larger scale phosphoric acid plants certainly seem likely over the next decade or so. In the future, the focus will also be on coherent plant designs. These will need to encompass the maximisation of global recovery, equipment refinements and consumption improvements. A significant opportunity also exists for

the comprehensive reuse of DH gypsum. It will be interesting to see what technology is either revived or developed to turn gypsum waste into a resource Only one thing is for sure, the future is

coming, and - as a technology and engineering company - if we are not moving forward, we will be watching others overtake.

References

- 1. Levshon, D. 1978, Recent Performance and Innovations in Dorrco Process Phosphoric Acid Plants ISMA Conference 1978 2. Leyshon, D. et al., 1991. Phosphoric Acid
- Technology for the Nineties, AIChE Conference 1991 3. EPA, 1993, Phosphoric Acid and Phosphatic
 - Fertilizers: A Profile. US EPA Project RTI5428-49 DR July 20 1993
 - 4 Byrd, J. et al., 2019, The Umm Wu'al Phosphoric Acid Plants - A Success Story, CRU Orlando 2019
 - Byrd, J. &Curran, E., 2017. Global Losses in 5. Phosphoric Acid Plants, CRU Tampa 2017. 6. Becker, P., Phosphates and Phosphoric Acid, 3rd Edition
 - 7. Levshon, D., 1997, Phosphoric Acid Technology, Phosphorous & Potassium No. 212, November-December 1997

Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577

London SE1 7SJ, England

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020

Conference. Paris

COVER FEATURE

production goes

COVER FEATURE 3

phosphate industry

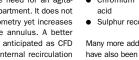
FERTILIZER INTERNATIONAL

JANUARY-FEBRUARY 2020

BCInsight

Southbank House, Black Prince Road

Fertilizer


green

Europe's

Web: www.bcinsight.com www.bcinsightsearch.com

Fertilizer International 494 | January-February 2020

acid

Abo Rawash industrial zone of Egypt's 6th

October City. This is located in Giza Gover-

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

new large-scale production complexes for phosphoric, nitric and sulphuric acid on an 180.000 m² site in the Sadat industrial zone. The site, ideally located in Sadat City, Monufia Governorate, between Alexandria and Cairo, is close to the Egyptian

The new acid production facilities will enable Evergrow to increase SOP capacity and produce CaCl₂ for non-agricultural uses Due to these manufacturing investments, Evergrow's annual production capacity rose from 885.000 tonnes in 2016 to more than one million tonnes in 2017.

Evergrow at the Sadat industrial zone to consume waste hydrochloric acid (HCI) from the new complex. As well as being the best solution for HCl waste, the ChemBe process was selected by Evergrow because it was capable of generating high profits from phosphates and phosphoric acid production

The industrial process developed by of a production site in the

www.fertilizerinternational.com

norate around 32 kilometres from the capiate rock raw materia tal Cairo. Evergow was the first Egyptian company to specialise in the production Fe₂O₃ 1.6 wt % of water-soluble fertilizers such as potas-Al₂O₃ 0.5 wt % sium sulphate (SOP), monoammonium SiO₂ 16.0 wt % phosphate (MAP), granular and liquid urea Cd 9.2 ppm phosphate (UP), solid and liquid NPKs and calcium ammonium nitrate (CAN). As 12ppm In 2011, to meet increasing demand Pb 7 ppm for its products. Evergrow established two

• More mining projects are made eco- Process effluents are drastically reduced Higher quality products and co-products water-soluble fertilizer market.

EcoPhos implemented a project for

Ecophos for Evergrow (Figure 1) converts phosphate rock into dicalcium phosphate (DCP) and calcium chloride (CaCl₂). Hydrochloride acid (HCI) and calcium carbonate (CaCO₂) are the other main raw materials.

> FERTILIZER INTERNATIONAL DCP animal feed **JANUARY-FEBRUARY 2020** ► CO rock residue phosphoric acid 61% P.O.

BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

process from EcoPhos merges beneficiation with chemical processing to generate high-quality phosphoric acid and dicalcium phosphate products. Mohamed Takhim, the CEO and founder of EcoPhos, describes how the ChemBe process is being implemented at the Evergrow project in Egypt.

The innovative ChemBe

Conventional phosphate production

18

22

23

25

26

27

28

29

30

32

33

he production of phosphates is traditionally based on two distinct and separate processes: beneficiation and chemical processing.

Beneficiation aims to remove deleterious components from the phosphate rock raw material - sand, organic matter, magnesium salts etc. - to ensure it is suitable for chemical processing This is generally achieved by grinding, washing, de-sliming, sizing and froth flotation. Calcination is also used occasionally

This complex beneficiation process consumes large amounts of energy and water and generates substantial volumes of waste and contaminated effluent. The efficiency of beneficiation is also low, typically because of large phosphate losses in waste materials such as pebbles, clay, oversize and tailings. Beneficiation is also becoming increasingly challenging due to the depletion of phosphate resources and the decline in the quality of phosphate rock ore After beneficiation, upgraded rock con-

centrates are transported to the chemical plant where they are reacted with sulphuric

acid to produce dilute phosphoric acid. This is then concentrated and purified to obtain impurities.

merchant grade acid (MGA). The quality of MGA obtained is directly linked to the composition of the phosphate rock used and can still contain heavy metals and other harmful

EcoPhos ChemBe plant

for Evergrow in Egypt

generates large quantities of gypsum. This phosphogypsum waste - which may be contaminated with heavy metals and radioactive elements - needs to be stored in stockpiles (stacks) or discharged to the sea. Phosphogypsum, whatever the disposal route, creates a costly environmental problem that needs to be managed.

The EcoPhos ChemBe process

The Belgian company EcoPhos was founded by Mohamed Takhim in 1996 with the specific aim of developing solutions to the economic and environmental challenges faced by the phosphate industry. The ChemBe process is one of the solutions successfully developed by EcoPhos. This innovative technology merges beneficiation with chemistry to create an optimised chemical beneficiation process.

This wet phosphoric acid process also

In a ChemBe plant, the raw phosphate ore is gently digested in dilute hydrochloric acid solution. This 'soft' process selectively dissolves the soluble phosphate from the unwanted insoluble part of the ore. This insoluble fraction, which remains as a solid residue under the mildly acidic conditions. is washed and then disposed of or recycled. The next step in the process is to precip-

itate the soluble phosphate obtained from acid digestion. This is achieved by adding calcium carbonate (or another source of calcium) to the soluble phosphate solution. This precipitates dicalcium phosphate (DCP) crystals and leaves a calcium chloride solution. The crystallised DCP created is then separated from the calcium chloride mother solution by filtration.

The leftover calcium chloride solution is fully recycled in the process by reacting with sulphuric acid. This results in the formation of hydrochloric acid and a gypsum by product. The gypsum obtained is highly pure as impurities from the phosphate rock were removed in the preceding digestion stage. The DCP product generated by the ChemBe process is an ideal starting material for a wide range of other phosphate products, including;

tional phosphate production technologies. It key advantages include: • The efficient and highly flexible processing of phosphate or

traditional beneficiation.

Single superphosphate (SSP)

Triple superphosphate (TSP)

• All grades of phosphoric acid

phosphate (MCP) etc.

Feed-grade DCP and monocalcium

Indeed, the DCP obtained from the

ChemBe production route contains much

higher phosphate levels than beneficiated

ore - typically 40-48 percent PoOr vs 30-39

percent for high-grade rock concentrates.

The DCP end-product is also free of car-

bonate (CO2) and sand, contains less calcium, and has a low heavy metal content.

The yield of the ChemBe process (typically

80-95 percent) is also much higher than

standard beneficiation technologies (which

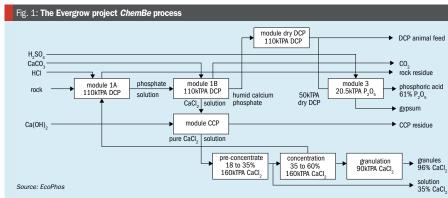
typically range from 25 percent to 80 per-

cent maximum depending on rock quality).

advantages means the ChemBe process

can make new projects much more eco-

process, by combining together chemistry


with beneficiation, offers a practical, eco-

nomic solution that overcomes a number

of issues encountered when using conven-

These significant yield and quality

NPKs

nomically feasible. Because the process Evergrow is a pioneering Egyptian company can happily consume much lower quality ore, it can also increase the operational that produces speciality fertilizers to meet life of a phosphate rock mine by a factor of up to four! Finally, because water is recy-

increasing demand from local and regional agriculture. Evergrow is positioning itself cled, water consumption in the ChemBe as the future leader in the fertilizer market process is much lower in comparison to in Egypt and the Middle East by optimising the value of locally-available resources. In summary, the EcoPhos ChemBe

Table 1: Evergrow project:

P₂O₅ 22.9 wt %

CaO 42.0 wt %

SO₂ 3.0 wt %

MgO 0.8 wt %

Source: EcoPhos

nomically feasible

are obtained

F 2.5 wt %

composition of the

As the company has grown, Evergrow has maintained a high level of operational excellence in fertilizer manufacturing - by investing in innovation and regularly upgrading its plants. This approach to business enables Evergrow to supply its customers with effective, reliable and safe products that meets international quality standards. Evergrow was founded in 2006 with

Less energy and water are consumed.

The Evergrow project, Egypt

Fig. 1: The Evergrow project ChemBe process							
Rock reserves are increased	the	opening	C				
ing of phosphate ore		ergrow	۷				

13

21

22

23

24

25

26

28

30

as a project for Evergrow. This plant will

use low-grade Egyptian phosphate rock

and hydrochloric acid waste generated by Evergrow's SOP production plant. The

Innovative ChemBe process developed

by EcoPhos will use these raw materials

to produce DCP, phosphoric acid and cal-

cium chloride. The low cost of the rock

and HCI raw materials, as well as the val-

orisation of co-products, will keep plant

production costs very low and profit mar-

gins high. Last but not least, the ChemBe

process guarantees that the Evergrow

plant will operate to high ecological and

environmental standards – as it avoids the

generation of large quantities of phospho-

gypsum, and also keeps both energy and

Evergrow project has been validated by

EcoPhos at semi-industrial scale, Demon-

stration tests carried out at the company's

Technophos site in Bulgaria confirmed the

stability of the process and its ability to

The ChemBe process used in the

water consumption to a minimum.

What's in issue 494

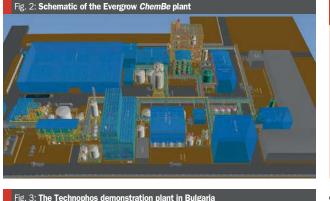
COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3


Europe's phosphate industry

deliver high-quality products. The Evergrow project is close to completion with start-up of the ChemBe plant currently scheduled for June 2020.

> FERTILIZER INTERNATIONAL **JANUARY-FEBRUARY 2020**

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

Project raw materials

phate rock

supplied locally.

Semi-industrial scale

demonstration tests

Analysis of the Egyptian phosphate rock

raw material revealed a low P205 con-

tent and high aluminium, iron and silica

contents (Table 1). This composition -

although unusable with conventional phos-

phate production processes - is ideal for

Table 2: ChemBe process: composition of the DCP product

P ₂ O ₅	41 wt %
Ca0	26.4 wt %
F	0.08 wt %
MgO	210 ppm
Fe ₂ O ₃	472 ppm
Al ₂ O ₃	67 ppm
Cd	<0.5 ppm
As	1.2 ppm
Pb	< 1.0ppm

demonstration plant in Bulgaria (Figure 3). For validation purposes, this plant was operated continuously for 24 hours over a 10-day period.

The process stability of the following three ChemBe modules was validated during the 10-day test run at the Technophos demonstration plant: Module 1A: digestion of phosphate rock -

first refining step Module 1B: crystallization of DCP - the

second refining step Module 3: Phosphoric acid production using the EcoPhos TacHem process.

The phosphoric acid obtained from Module 3 is suitable for production of water-soluble fertilizers. However, an additional purification process developed by EcoPhos - known as PUMA (purification using membranes of acids) - is necessary to obtain technical- or food-grade phosphoric acid.

Products and co-products

Ecophos technology, which is perfectly capable of consuming low-grade phos-The ChemBe process generates DCP, phosphoric acid and pure gypsum as prod-The ChemBe process also consumes ucts and co-products.

HCI, an unwanted by-product of Evergrow's The ChemBe process, as well as deliv-SOP plant. Calcium carbonate used in the ering a high phosphate yield from lowprocess is sourced locally and ground to grade Egyptian rock, generates DCP with increase reactivity. The sulphuric acid (96a high P_oO_r content (around 41 percent). 98%) consumed by the process is also low calcium content (around 26 percent) and low levels of impurities (Table 2). Analysis of the phosphoric acid obtained from the semi-industrial tests confirmed a high-quality product with low impurity levels (Table 3). Finally, the gypsum by-The ChemBe process for the Evergrow product generated by the ChemBe process project was validated by EcoPhos at Techwas also found to be extremely pure (99.8 nophos, the company's semi-industrial percent. Table 4).

Table 3: ChemBe process: composition Table 4: ChemBe process: of the phosphoric acid product composition of the gypsum product P205 62 wt % CaSO₄.2H₂O CaO 0.02 wt % P₂0₅ S03 0.8 wt % CI F <0.02 wt % MgO MgO 300 ppm 698 ppm Fe₂O₃ Fe₂O₃ Al₂O₃ 102 ppm Al₂O₃ Cd <0.5 mag Cd As <2 ppm As Pb < 1.0 ppm Pb Source: EcoPhos Source: EcoPhos

Conclusion

The innovative phosphates technology developed by EcoPhos leads to lower production costs due to its ability to consume low-grade phosphate rock as a rawmaterials

The company's ChemBe process consumes phosphate rock, as-mined without

CHANGE YOUR MIND ABOUT PHOSPHATE

www.fertilizerinternational.com

www.fertilizerinternational.com

The DCP from the process is firstly dried. A

portion of the dry DCP obtained is sold as

final product, while the remainder is con-

verted to purified phosphoric acid (H_3PO_4)

and gypsum (CaSO₄.2H₂O) using sulphuric

acid (H₂SO₄). The CaCl₂ solution gener-

ated is concentrated to 35 percent. This is

partly solidified to obtain a 96 percent pure

Construction of the €80 million Evergrow

project began in 2015 with start-up cur-

rently scheduled for June 2020. The large-

12,000 man-hours of process develop-

12.000 man-hours of project manage-

More than 80 Ecophos staff have worked

on the Evergrow project since its inception. They have been involved in all aspect

of the project, including laboratory work

detailed engineering, process validation,

semi-industrial plant tests, project man-

72.000 man-hours of engineering

calcium chloride by-product.

scale project has involved:

ment and procurement.

agement and procurement.

ment and tests

Fertilizer International 494 | January-February 2020

fully converts this to high-quality DCP. This intermediate product is a stepping stone for the production of phosphoric acid and several other phosphate products such as monosodium phosphate (MSP). TSP and NPKs

any additional beneficiation, and success-

>99 wt %

0.36 wt %

300 ppm

13 ppm

<100 ppm

<50ppm

<10 ppm

<10 ppm

<5ppm

Below detection limits

EcoPhos is currently building a modern phosphate production plant in Egypt

/Technophos

2 PK PROJECT LISTING

10

12

13

14

15

26

27 28

33

Phosphates project listing 2020

Fertilizer International presents a round-up of phosphate rock, phosphoric acid and phosphate fertilizer projects.

Phosphate rock projects*

Plant/project	Company	Location	capacity ('000 t)	Status	Start-up date
BRAZIL					
Goias expansion	Copebras/CMOC	Goias	230	UC	2023
CANADA					
Lac-a-Paul	Arianne Phosphate	Quebec	3,000	FS	n.a
Sept-lles	Mine Arnaud/Yara	Quebec	1,500	FS	n.a
REPUBLIC OF CONG	0				
Hinda	Kropz	Hinda	1,200	FS	n.a
GUINEA-BISSAU					
Farim	Itafos	Guinea-Bissau	1,300	FS	202
IORDAN					
Eshidiya expansion	JPMC	Eshidiya	1,300	n.a.	2018/1
KAZAKHSTAN					
Zhanatas expansion	EuroChem	Zhanatas	800	PL	202:
SENEGAL					
Baobab	Avenira	Gadde Bissik	1,000	FS	n.a
SOUTH AFRICA					
landsfontein	Kropz	Elandsfontein	1,000	С	202

KEY FOR BOTH TABLES

- FS Feasibility study complete n.a. not available
- PL Planned
- UC Under construction
- C Project completed
- DAP Diammonium phosphate DCP Dicalcium phosphate
- MAP Monoammonium phosphate
- PPA Purified phosphoric acid
- SSP Single superphosphate TSP Triple superphosphate

phosphate mining projects globally. However, only capacity developments with a published feasibility study are listed here. Additionally, expansions by established producers in Russia (PhosAgo at Kola, EuroChem at Kovdor, Acron at Oleniy Ruchey), and new projects in Kazakhstan (EuroChem), should add more than two million tonnes to regional phosphate rock capacity by 2023. Africa is undoubtedly the region with the most potential for phosphate rock expansion – although large uncertainties over individual projects and their timescales remain. OCP Group is, however, pressing on with ambitious plans to increase phosphate rock capacity at Khouribga and Meskala in Morocco. Avenira was looking to sell its Baobab project in Senegal to a consortium of buyers, as of September 2019. Kropz's Elandsfontein project should restart this year, if and when its water permitting issues are resolved. The company recently signed a technical cooperation agreement with PhosAgro.

*Excluding China. Standalone, non-integrated projects only. At present, there are tens of junior

PROJECT LISTING

Phosphate fertilizer, phosphoric acid and integrated phosphate rock projects**

Plant/project	Company	Location	Product capacity	y ('000 t)	Statt	is start-i da
ALGERIA						
Bled Al-Hedba	Asmidal/Manal Group/Indorama	Oued El Kebrit, Hadjar Soud	Phosphate rock	5,000	PL	2022
Bled Al-Hedba	Asmidal/Manal Group/Indorama	Oued El Kebrit, Hadjar Soud	Phosphoric acid (P ₂ O ₅)	1,600		2022
Bled Al-Hedba	Asmidal/Manal Group/Indorama	Oued El Kebrit, Hadjar Soud	DAP/MAP (3 x 1.3 Mt)	3,900		2022
BRAZIL						
Serra do Salitre	Yara	Patrocinio, Minas Gerais	Phosphate rock	1,200	С	20
Serra do Salitre	Yara	Patrocinio, Minas Gerais	Phosphoric acid (P ₂ O ₅)	250	С	20
Serra do Salitre	Yara	Patrocinio, Minas Gerais	SSP	650	С	20
Serra do Salitre	Yara	Patrocinio, Minas Gerais	DAP/MAP	350	С	20
EGYPT						
Ain Sokhna	NCIC	Suez Ain Sokhna	Phosphoric acid (P ₂ O ₅)	400	С	20
Ain Sokhna	NCIC	Suez Ain Sokhna	DAP/MAP	850	С	20
El Wadi	WAPHCO	Abu Tartur	Phosphate rock	3,000	UC	20
El Wadi	WAPHCO	Abu Tartur	Phosphoric acid (P ₂ O ₅)	500		20
El Wadi	WAPHCO	Abu Tartur	DAP/MAP	800	UC	20
El Wadi	WAPHCO	Abu Tartur	TSP	600	UC	20
ChemBe	Evergrow/EcoPhos	Sadat City	DCP	n.a.	UC	20
ETHIOPIA						
Dire Dawa	OCP/Ethiopia	Dire Dawa	Finished phosphates	1,500	PL	2023
INDIA						
Visakhapatnam	Coromandel International	Visakhapatnam	Phosphoric acid (P ₂ O ₅)	100	UC	2019-
Sikka expansion	GSFC	Sikka	Phosphoric acid (P205)	230	UC	2019-
Sikka expansion	GSFC	Sikka	DAP/NPK (Train 4)	500	UC	2019-
Orissa expansion	Paradeep Phosphates	Paradeep	Phosphoric acid (P ₂ O ₅)	180		2022
Orissa expansion	Paradeep Phosphates	Paradeep	DAP/NPK	400	PL	2022
KAZAKHSTAN						
Karatau	EuroChem	Zhambyl	Finished phosphates	1,000	PL	20
Taraz	Kazphosphate	Taraz	PPA (P ₂ O ₅)	240		2019-
Taraz	Kazphosphate	Taraz	MAP	460	PL	2019-
MOROCCO						
Various	OCP Group	Various	Phosphoric acid (P ₂ O ₅)	1,500	UC	2019-
Various	OCP Group	Various	Finished phosphates	4,350	UC	2019-
NIGERIA						
Ammonia/ fertilizer complex	OCP/Nigeria	Southeast Nigeria	Fertlilizers	1.000	PL	20
RUSSIA	,			,		
Cherepovets expansion	PhosAgro	Cherepovets	Phosphoric acid (P ₂ O ₅)	170	UC	2019-
Cherepovets expansion	PhosAgro	Cherepovets	Finished phosphates/NPK	1.130		2019-
	THUSAGIU	Cherepovers	Tinished phosphates/Ni K	1,150	00	2013-
SAUDI ARABIA						
Wa'ad Al Shamal/Umm Wu'al	MWSPC	Wa'ad Al Shamal	Phos acid (P ₂ O ₅), 3 lines	1,500		2018/
Wa'ad Al Shamal/Umm Wu'al	MWSPC MWSPC	Ras al Khair Ras al Khair	DAP/MAP, 3 lines	3,000		2018/
Second mega project Second mega project	MWSPC	Ras al Khair	Phosphoric acid (P ₂ O ₅) Finished phosphates	1,500		post-20 post-20
	WWSFC		rinisheu phosphates	3,200	FL.	p05t-20
TOGO	Designation Opening		Deleksel also sekset.	4.000	DI	
n.a.	Dangote Group	n.a.	Finished phosphates	1,000	PL	n
TUNISIA						
M'dilla II	GCT	M'dilla	Phosphoric acid (P ₂ O ₅)	180		2019/
M'dilla II	GCT	M'dilla	TSP	500	UC	2019/
UNITED STATES						
White Springs	Nutrien	Florida	MAP	400	110	20

**Excluding China. The International Fertilizer Association (IFA) expects various production investments by OCP Group to collectively add an additional 4,350 t/a to Morocco's finished phosphates capacity out to 2023. Elsewhere in Africa, OCP has also firmed-up joint venture projects in both Nigeria and Ethiopia. The second phosphates mega project announced by Ma'aden and its MWSPC partners should eventually ramp-up product capacity in Saudi Arabia by a further 3,260 t/a. PhosAgro is also expanding phosphate fertilizer and NPK production capacity at its Cherepovets complex by more than one million tonnes, and at the same time enlarging the range of fertilizer grades it produces.

Fertilizer International 494 | January-February 2020

www.fertilizerinternational.com

What's in issue 494

CONTENTS

Phosphates 2020 Conference, Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL ISSUE 494 JANUARY-FEBRUARY 2020

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577

Web: www.bcinsight.com www.bcinsightsearch.com

www.fertilizerinternational.com

Phosphate technology profiles

Prayon Technologies (PRT)

Prayon Technology (PRT) is the technology arm and subsidiary of parent company Prayon s.a. With experience dating back more than 60 years, PRT considers itself the undisputed global leader in phosphoric acid production technology.

Uniquely, Prayon is both a leading commercial manufacturer of phosphoric acid and its derivatives - purified acid, technical- and food-grade phosphates - and a licensor of phosphoric acid production technology. This provides the Belgiumheadquartered company with considerable advantages when it comes to understanding the needs of its technology customers.

A major proportion of phosphoric acid production worldwide relies on Prayon's process technology. In fact, Prayon Technologies has designed, developed and helped construct more than 135 phosphoric acid

GEA Group

18

23

28

29

30

32

33

GEA is emerging as a leading technology and equipment provider to the phosphates industry. The Dusseldorf-headquartered group is one of the world's largest production technology and equipment suppliers and employs about 18,500 people across the globe. GEA generates around 70 percent of its revenues from the food and beverages sector - and is the technology leader in this market.

With more than 100 years of experience in crystallisation alone, the company offers a range of production plant technologies able to meet the diverse requirements of the phosphate and fertilizer industries. They include: Evaporators

- Crystallisers
- Membrane filtration units
- Centrifugal decanter and separators
- Spray and fluid bed dryers for drying crystals or granulation.

GEA specialises in the production of watersoluble monoammonium phosphate (MAP) from phosphoric acid. The innovative production technology offered by the company is capable of manufacturing high-quality water-soluble MAP from lower-quality merchant grade acid (MGA). This ground-breaking process reduces opex and/or capex costs as it avoids the need to purchase more expensive purified phosphoric acid

www.fertilizerinternational.com

plants in more than 30 different countries globally. These plants consume more than 40 different types of phosphate rock and have P_2O_5 production capacities ranging from 25 tonnes up to 2,000 tonnes per day. Prayon offers flexible production tech-

nologies able to respond optimally to the requirements of phosphoric acid producers offering

- Reduced energy consumption
- increased yield Lower production costs

Excellent environmental performance.

Pravon Technologies essentially offers two types of service: technology licensing and consultancy. Its licensing activities cover: • Phosphoric acid production - including a full range of processes (DH, HH, DA-HF, CPP, PH2) producing hemihy-

(PPA), or integrate a purification line within

fied liquid stream after an initial reaction

and filtration step. Dry, pure and highly

water-soluble MAP crystals are eventu-

ally generated as an end-product, after a

series of further crystallisation and purifi-

cation steps. Waste from the various puri-

fication and filtration steps, in the form of

sludges or purges, still contains some val-

uable P₂O₅. This can be captured by further

processing - for example, via the fertilizer

cally deliver a yield (i.e. the amount P_2O_5

recovered to the crystalline end-product

vs the P205 contained in the feed acid) of

between 50-70 percent. The exact yield

soluble content) of the final MAP product.

soluble MAP has already been success-

fully implemented by an Eastern European

customer. The new plant avoided consider-

able capital and operational expenditure by

allowing non-purified MGA to be used as

the phosphoric acid feed, while still deliver-

value as the end-product. As a fertilizer.

following key benefits:

the crystalline MAP end-product offers the

ing a pure MAP fertilizer with a high market

GEA's production technology for water-

GEA's manufacturing process can typi-

plant's blending or granulation units.

GEA's process firstly produces a clari-

the fertilizer production plant.

drate or dihydrate calcium sulphate with one or two filtration step(s) Phosphoric acid concentration

- Fluorine recovery
- Gas scrubbing systems for F, dust and H_oS reduction
- Phosphoric acid purification SO₂, Cd. As, F, Al₂O₃, Fe₂O₃ and MgO reduction technologies
- Phosphogypsum purification
- Uranium recovery from phosphoric acid
- DCP production from low-grade rock and dilute sulphuric acid - the GetmoreP process
- Pravon's consultancy activities cover:
- Audits of existing plants with specific objectives
- Phosphate rock evaluations
- Plant operator training.

Operational GEA crystalliser at a fertilizer production plant.

- High-quality water-soluble MAP (typically
- depends on the impurity levels in the MGA 12-61-0) with a low insoluble content and the purity/quality requirements (non- Avoids clogging problems on spray sys
 - tems and pumps Suitable for fertigation, foliar applications and the production of fertilizer
 - blends and nutrient solutions Low turbidity after dissolution in water High-throughput processing
 - · Free of chlorine, sodium and other deleterious elements
 - Moderate solution pH safer and less corrosive
 - Access to excellent laboratory back-up, support and expertise.

Fertilizer International 494 | January-February 2020

Andy Hemphill, senior editor for potash at ICIS Fertilizers, takes a deep dive into the potash market. Potash producers are praying that tight capacity control and resurgent demand will curb the current bearish price trend.

fter a rocky second-half in 2019, the global potash industry has limped into 2020 hoping that tighter production control - and the potential for resurgent demand - could spur trade and even, perhaps, a price recovery.

Last year ended with the major global producers publicly announcing cuts to muriate of potash (MOP) output - their tried and trusted response to what is traditionally a slower period of demand.

But did they act fast enough to curb production in 2019? Probably not, given the already high inventory levels in Brazil. a key importing nation - a situation compounded by the waiting game being played by Chinese buyers over their next long-term import contract.

Production cutbacks

Last September, Canadian major Nutrien unveiled plans for inventory shutdowns of up to two months at its Allan, Lanigan and Vanscov potash mines in Saskatchewan. A two-week shutdown at Nutrien's flagship Rocanville mine in the province was also announced subsequently, despite a Canadian Rail strike that caused chaos in mid-November

On the other side of the Atlantic, German potash producer K+S responded similarly to weak demand by cutting back its

2020. Chinese buyers are expected to approach MOP suppliers in January or Feb-2019 production by up to 300,000 tonnes. ruary 2020 to begin talks, having opted to This curtailment in MOP output is expected stall these in late 2019.

up to €80 million, according to K+S. Russian potash producer Uralkali also supply - with the choice of domestic proannounced plans to cut production in Sepduction and/or lower-priced imports from tember. The company planned to reduce its Cambodia and Laos - giving them consid-MOP output by 350,000-500,000 tonnes for erable clout in negotiations. the remainder of 2019 by temporarily shutting down its production complex for maintenance. Although BPC was more reserved about preimport contract first. India is eventually cise tonnages, the Belarusian producer also expected to buy 1.8 million tonnes of MOP between October 2019 and March 2020. confirmed its production would be cut by "around one-third" during 2019's last quarter. the subcontinent's newly-established six-Despite arguably acting too late, the month import period. Overall, India's 2019main potash players nonetheless appear 2020 purchases are expected to reach confident that, collectively, their combined 3.8-4.0 million tonnes in total.

to reduce company earnings (EBITDA) by

production cutbacks will support the potash market by tightening availability. Neither are they ruling out a possible

rise in potash prices, provided production discipline continues.

"A lot will depend on the levels of production and demand. I'm not... dropping the scenario of a price increase. If the industry will be wise enough to avoid overproduction. prices can go up dramatically fast," a chief salesperson of one major producer told ICIS.

Of course, a lot of this confidence contracts (Table 1) were agreed in October hinges on the potential for increased ferand early November at \$280/t cfr (cost & tilizer demand in the first-half of 2020. freight) India – a decrease of \$10/t from Exactly when buyers will return to the marthe previous contract supply period. Indian long-term contracts are a bellket is also up for debate.

The start of negotiations for the next long-

term Chinese import contract will be a

particularly notable market feature in early

Chinese MOP inventories remain high.

The delay to the Chinese contract

At the time of writing, there have been

no new Indian contract settlements since

early November, when the Arab Potash

Company (APC) became the latest pro-

ducer to sign a supply contract with Indian

Potash Limited (IPL). APC did not, however,

reveal contract details - either the price

agreed or the volumes placed - bevond

saving its agreement with IPL was in line

The first wave of 2019-2020 supply

with the market level

forced Indian buyers to settle their own

Buvers also have flexibility on source of

CONTENTS

What's in issue 494

COVER FEATURE 1

Phosphates 2020 Conference. Paris

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

FERTILIZER INTERNATIONAL **JANUARY-FEBRUARY 2020**

BCInsight

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

CONTENTS

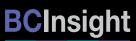
What's in issue 494

COVER FEATURE 1

Conference. Paris

Fertilizer production goes

COVER FEATURE 3


Europe's phosphate industry

Phosphates 2020

COVER FEATURE

green

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

wether for the global MOP trade. Given that a decrease of up to \$30/t on the previous year's contract price has been heard in discussions, the initial decrease of just \$10/t was seen as the first sign of a recovery in MOP demand and pricing - after months of bearish sentiment and eroding offer levels. But it later became clear, that IPL's

decision to limit settlements to a sixmonth period means a stronger argument for a higher price cut will be advanced in the first-quarter of 2020.

10

12

13

14

15

18

20

22

23

24

25

27

28

29

31

32

33

"The discount wasn't really enough, but the Indians had to get things moving. In the first quarter, the Chinese can push everybody down, looking for \$20-30/t less - but that's a problem for then," a source at one MOP producer told ICIS: "For now, the pain is gone. The potash industry will survive. We'll see more demand in Southeast Asia as [crude palm oil] futures are recovering. then there's India. First-quarter and maybe second-half [2020] will be busier."

Mergers and management

Another key point to watch in 2020 is the potential for consolidation in the global potash industry.

Uralkali has been getting close to another major player in the Russian market - EuroChem. The pair have been discussing the possibility of "logistics optimisation for shipments into selected southeast Asian markets", a Uralkali source told ICIS. Although some coordination has been

mooted, this is the first overt signal of a potential Uralkali-EuroChem alliance, Euro-Chem is a relative newcomer to the potash market. It also manufactures a variety of

Table 1: Contract volumes for IPL. October 2019 to 31 March 2020. \$280/t cfr India Supplier/Country Volume (tonnes) - unconfirmed

Belarusian Potash Company (BPC)/Belarus	350,000-400,000
Uralkali/Russia	350,000
ICL/Israel	250,000-275,000
Source: ICIS	

ILL OF OLL COD. T.	4 • • • • • • • • • • • • • • • • • • •		
able 2: Chinese SUP: 10	op lu export destinations.	. January-October 2017-19 (tonnes)	

Country	2017	2018	2019
Iran	480	25	102,260
Myanmar	656	1,557	28,984
South Africa	2,018	0	23,566
Mexico	0	0	23,362
Chile	16	0	19,152
Peru	0	0	12,460
India	0	1,985	11,289
Pakistan	636	0	11,203
Japan	3,323	121	7,611
Australia	2,014	244	5,299
Total	13,584	7,424	293,369

fertilizer products, including urea, ammonium nitrate and urea ammonium nitrate. The company plans to leverage its already trusted EuroChem brand to secure a premium on MOP sales in Brazil. The potential EuroChem-Uralkali team-up remains possible. This is despite news in January that a joint bid by Uralkali and Uralchem – the major Russian nitrogen producer

- to take a controlling stake in Brazil's Fertilizantes Heringer had fallen through. Heringer is currently under bankruptcy protection. It is understood that OCP and Nutrien - who own a 10 percent and 9.5 percent share in Heringer, respectively - have the right of first refusal for the company. In Canada, meanwhile, questions sur-

round potash major Nutrien's plans for

Company	Claim/Area (km ²)	Resources	Offtake agreements
Salt Lake Potash	Goldfields/3,300	290-458 million tonnes	 50% to Mitsubishi and 50% to China's Sinofert from 50,000 t/a demonstration plant Three offtakes with Indagro, Unifery & Fertisur for a total 170,000 t/a.
Kalium Lakes	Beyondie/2,400	180,000 t/a over 30-50 years	75,000 t/a to K+S for a 10-year term
Australian Potash	Lake Wells/1,200	14.7 million tonnes over seven years	MOUs with China's Sino-Agri and Hubei-Agri for up to 200,000 t/a
Agrimin	Lake Mackay/4,370	426,000 t/a over 20 years	None confirmed
Reward Minerals	Lake Disappointment/5,000	9 million tonnes over 25 years	None confirmed
Reward Minerals	Lake Disappointment/5,000		None confirmed

www.fertilizerinternational.com

POTASH MARKET REPORT

Chinese-sourced SOP may find a more

receptive audience in Europe, if imports

impose SOP export tariffs in 2020, fol-

lowing the increase in volumes traded

internationally last year (Table 2), gener-

ally regarded as a great success. That

said, high freight costs, and the expense

of enrolling and complying with the EU's

REACH regulations, may deter many

potential Chinese SOP producers from

mining companies are locked in a race

and competing to be first in the market

to produce SOP from Western Australia's

dry lakebeds. None of the five has yet to

Salt Lake Potash has secured a trio

SOP fertilizer amounting to 170,000 t/a.

Similarly, rival prospective producer Kalium

Lakes has also secured buy-in from estab-

lished market players (Table 3).

www.fertilizerinternational.com

In Australia, meanwhile, five junior

exporting to Europe.

It seems very unlikely Beijing will

continue to rise at the rate seen in 2019.

2020 - following a dismal year in which is less coming in." the Texan farmer said. the US market was characterised by bad adding: "I had hoped to take on more land weather, low crop prices, and limited but not now, and not without having more demand. Nutrien's CEO Chuck Magro equipment, and because I don't have faith nevertheless remains bullish in the comprices will not crash again." pany's latest results announcement: "We One thing everyone seems to agree on believe that agriculture fundamentals are is that a significant upturn in upcoming starting to strengthen, and we expect 2020 corn sowings will help spur a recovery in the US fertilizer market - a devel-

2020 to be a strong year for crop input demand " Farmers in many US states have been discussing the need to tighten expenditure

crop production products that went unused

in 2019 ready for the start of 2020's spring

planting season. This could see the US fer-

tilizer retail market suffer a final blowback in

early 2020 from last year's historically poor

A Texas farmer told ICIS "it's getting

"Crop prices have been not good for a while now, and everything we are buying

harder out here", confirming he was hold-

ing off from any further fertilizer commit-

to put into this, from seed to fertilizer to

labour, is costing so much more, and there

ments until the start of spring.

planting season.

since the end of last summer. A large per-SOP outlook centage have been storing the fertilizer and

The 2020 outlook for sulphate of potash (SOP) - MOP's low-chloride, premium sister product - is less bearish, albeit still weak overall

opment that is generally expected if the

weather stays favourable.

European SOP demand was steady in begin producing SOP in bulk, and all are second-half of 2019, with bids declining still at relatively early stages of developslightly in what is the low season. Supply ment - although two companies have a is ample going into 2020, meaning there noticeable lead. is little expectation of increased demand until this year's second-quarter. of offtake agreements for its low-chloride

Although imports are on the increase, Chinese SOP has yet to make large inroads into the traditionally insular European market. There is speculation, however, that

Advertisers' index

Advertiser	Page	Website
ANDRITZ AG	15	andritz.com/separatior
Argus Media Co	7	argusmedia.com
Casale	IFC	casale.ch
Chemetics	5	worley.com/chemetics
Dead Sea Works	49	icl-group.com
Desmet Ballestra SpA	35	desmetballestra.com
ECOPHOS	55	ecophos.com
EMT Manufacturer of Blending Bagging & Transport Equipment	61	emt.tech
EIRICH GmbH	9	eirich.com
GEA Wiegand GmbH	13	gea.com
IFA Global Stewardship Conference	17	ifa-newyork2020.org
ITT Rheinhütte Pumpen GmbH	29	rheinhuette.de
Köppern GmbH & Co. KG	11	koeppern.de
Neelam Aqua & Speciality Chem (P) Ltd	OBC	neelamaqua.com
Phosphates 2020	IBC	crugroup.com/events
Prayon Technologies s.a.	40	prayon.com/technolog
Weir Minerals	25	global.weir/brands

Next issue: March/April 2020

IFA Annual Conference, New Delhi

- Rice fertilization
- Printed in England by: Buxton Press Ltd Palace Road, Buxton, Derbyshire,
- SK17 6AE © 2020 – BCInsight Ltd

Editor SIMON INGLETHORPE simon.inglethorpe@bcinsight.com Publishing Director TINA FIRMAN

tina.firman@bcinsight.com Subscription rates: GBP 300; USD 550; EUR 450

be made within 3 months of the issue publication date. Sales/Marketing/Subscriptions: MARLENE VAZ

Tel: +44 (0)20 7793 2569

Fax: +44 (0)20 7793 2577

marlene.vaz@bcinsight.com Cheques payable to BCInsight Ltd

tina.firman@bcinsight.com Tel: +44 (0)20 7793 2567

Japan: (also subscription enquiries)

Advertising enquiries TINA FIRMAN

Agents:

KOICHI OGAWA 0.T.O. Research Corporation

Takeuchi Building

1-34-12 Takadanobaba

Fax: +81 3 3200 2889

www.bcinsight.com

Copyright

Shiniuku-Ku, Tokvo 169, Japan Tel: +81 3 3208 7821

Previous articles from Fertilizer International and PK Insight from

1997 to the present are available

digitally in PDF format. To make a

purchase, or for a list of available articles please see

Issued six times per vear. or bi-monthly. All rights reserved. No part of this publication may be reproduced, stored in a retrieval

mechanical, photocopying, recording or otherwise – without the prior written permission of the

Convright owner.

ISSN: 0015-0304

Design and production:

JOHN CREEK, DANI HART

system or transmitted in any form or by any means - electronic.

Subscription claims: Claims for non receipt of issue must

BCInsight

Published by: BCInsight Ltd China Works, Unit 102. 100 Black Prince Road, London SE1 7SJ, UK Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577 Web: www.bcinsight.com www.bcinsightsearch.com

Distribution at:

- Drip Irrigation
- Potash and phosphate mining
- Innovations in froth flotation
- India's fertilizer market
- Shipping and freight report

Closing date for advertisement space booking is 13 March 2020 For further information and to book advertisement space contact: Tina Firman, Publishing Director: tina.firman@bcinsight.com Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577

For more information or to book your place, visit www.phosphatesconference.com

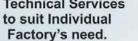
Increase Your

at no extra cost

Fertilizer Quality Improvement Chemicals ISO 9001 Certified, Worldwide Acceptance

15

ANTIFOAM FOR


HOSPHORIC ACID

ELEMENT EIXER Tailor made products & Technical Services

HARDENING AGEN

NEEM OIL

Suitable for SSP, TSP, MAP, CAN, ANP, NPK, DAP, AN, AS, UREA & Other Fertilizers

Working all over the world to improve the quality of fertilizers

DIATOMACEOUS

NEEM CAKE

FROTH FLOTATION AGENT

NEELAM AQUA & SPECIALITY CHEM (P) LTC. NO

701, North Avenue, Road No. 9A, V.K.I. Area, Sikar Road, Jaipur-302013 (INDIA) Ph.:+91-141-2333718 • Fax:+91-141-2333418 • Mobile:+91-9829069545 Email: mkmathur@neelamagua.com, support@neelamagua.com, www.neelamagua.com

Don't forget the next issue of Fertilizer International March/April 2020

CONTENTS

Phosphates 2020 Conference. Paris

COVER FEATURE 1

What's in issue 494

COVER FEATURE 2

Fertilizer production goes green

COVER FEATURE 3

Europe's phosphate industry

Southbank House, Black Prince Road London SE1 7SJ, England Tel: +44 (0)20 7793 2567 Fax: +44 (0)20 7793 2577

Web: www.bcinsight.com www.bcinsightsearch.com